基于改进的Transformer神经网络辅助的两阶段机组组合决策方法
TM73; 为了解决大规模电力系统机组组合的"维数灾"问题,提出基于Transformer神经网络的两阶段机组组合决策方法,该方法兼顾求解精度与速度.在第一阶段,考虑机组组合时段耦合的特性,提出基于多头注意力机制的特征向量构建方法,进而基于Transformer神经网络的全局视野与并行化优势,提出一种改进的Transformer神经网络来预辨识机组启停值.在第二阶段,基于预辨识的机组状态设计置信度阈值,并将机组启停判定可信度定义为启停可信与启停不可信状态,对于启停可信机组的状态进行直接确定,对于启停不可信机组的状态,通过机组组合物理模型进行求解来保证求解的可行性.IEEE...
Saved in:
| Published in | 电力自动化设备 Vol. 43; no. 3; pp. 172 - 179 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | Chinese |
| Published |
广西大学 电气工程学院,广西 南宁 530004%广西电网电力调度控制中心,广西 南宁 530023
01.03.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1006-6047 |
| DOI | 10.16081/j.epae.202209014 |
Cover
| Abstract | TM73; 为了解决大规模电力系统机组组合的"维数灾"问题,提出基于Transformer神经网络的两阶段机组组合决策方法,该方法兼顾求解精度与速度.在第一阶段,考虑机组组合时段耦合的特性,提出基于多头注意力机制的特征向量构建方法,进而基于Transformer神经网络的全局视野与并行化优势,提出一种改进的Transformer神经网络来预辨识机组启停值.在第二阶段,基于预辨识的机组状态设计置信度阈值,并将机组启停判定可信度定义为启停可信与启停不可信状态,对于启停可信机组的状态进行直接确定,对于启停不可信机组的状态,通过机组组合物理模型进行求解来保证求解的可行性.IEEE 30节点和IEEE 2383节点系统的仿真结果验证了所提方法的有效性. |
|---|---|
| AbstractList | TM73; 为了解决大规模电力系统机组组合的"维数灾"问题,提出基于Transformer神经网络的两阶段机组组合决策方法,该方法兼顾求解精度与速度.在第一阶段,考虑机组组合时段耦合的特性,提出基于多头注意力机制的特征向量构建方法,进而基于Transformer神经网络的全局视野与并行化优势,提出一种改进的Transformer神经网络来预辨识机组启停值.在第二阶段,基于预辨识的机组状态设计置信度阈值,并将机组启停判定可信度定义为启停可信与启停不可信状态,对于启停可信机组的状态进行直接确定,对于启停不可信机组的状态,通过机组组合物理模型进行求解来保证求解的可行性.IEEE 30节点和IEEE 2383节点系统的仿真结果验证了所提方法的有效性. |
| Author | 代伟 谢代钰 武新章 王泽宇 郭苏杭 赵子巍 张冬冬 |
| AuthorAffiliation | 广西大学 电气工程学院,广西 南宁 530004%广西电网电力调度控制中心,广西 南宁 530023 |
| AuthorAffiliation_xml | – name: 广西大学 电气工程学院,广西 南宁 530004%广西电网电力调度控制中心,广西 南宁 530023 |
| Author_FL | DAI Wei ZHAO Ziwei ZHANG Dongdong WU Xinzhang XIE Daiyu GUO Suhang WANG Zeyu |
| Author_FL_xml | – sequence: 1 fullname: WU Xinzhang – sequence: 2 fullname: ZHAO Ziwei – sequence: 3 fullname: DAI Wei – sequence: 4 fullname: XIE Daiyu – sequence: 5 fullname: GUO Suhang – sequence: 6 fullname: WANG Zeyu – sequence: 7 fullname: ZHANG Dongdong |
| Author_xml | – sequence: 1 fullname: 武新章 – sequence: 2 fullname: 赵子巍 – sequence: 3 fullname: 代伟 – sequence: 4 fullname: 谢代钰 – sequence: 5 fullname: 郭苏杭 – sequence: 6 fullname: 王泽宇 – sequence: 7 fullname: 张冬冬 |
| BookMark | eNotkMtKw0AYhWdRwVr7AL6Bm8R_ZjKZZCnFGxR0UddlkkzUUhPJIILrKuLCC2gRLbrRhQvdFMUmqC_TZOpbGFA4cBYHvgPfDKpEcSQRmsNgYhscvNAx5Z6QJgFCwAVsVVAVA9iGDRafRnWldjxgmHKLYaeKNvKHdJyeFVejyfedvu21EhGpME52ZaKf7nV2rj8vdTaYfB3lp8_lPv54_Ll5L17fikGqs16Z_OIkPx7ql37RHxXD61k0FYqukvX_rqHN5aVWY9Vorq-sNRabhsJAicE8hwoZcMYC7vqWYNwPHGFzLDilwrJd4QNxfY5dGwQlHEsONJTMJ5LgkBFaQ_N_3AMRhSLaanfi_SQqH9tB9zDYVl4pgAItLdBftAxsxQ |
| ClassificationCodes | TM73 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.16081/j.epae.202209014 |
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| DocumentTitle_FL | Two-stage unit commitment decision-making method based on auxiliary of improved Transformer neural network |
| EndPage | 179 |
| ExternalDocumentID | dlzdhsb202303022 |
| GrantInformation_xml | – fundername: (国家自然科学基金); (广西自然科学基金资助项目) funderid: (国家自然科学基金); (广西自然科学基金资助项目) |
| GroupedDBID | 2B. 4A8 92I 93N ADMLS ALMA_UNASSIGNED_HOLDINGS PSX TCJ |
| ID | FETCH-LOGICAL-s1032-5b83aed755d79c4a57cd8a671a733a469ac029c71960a3271e703fe5c2e21f523 |
| ISSN | 1006-6047 |
| IngestDate | Thu May 29 03:54:34 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Transformer神经网络 特征构造 数据驱动 机组组合 深度学习 |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-s1032-5b83aed755d79c4a57cd8a671a733a469ac029c71960a3271e703fe5c2e21f523 |
| PageCount | 8 |
| ParticipantIDs | wanfang_journals_dlzdhsb202303022 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-03-01 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | 电力自动化设备 |
| PublicationTitle_FL | Electric Power Automation Equipment |
| PublicationYear | 2023 |
| Publisher | 广西大学 电气工程学院,广西 南宁 530004%广西电网电力调度控制中心,广西 南宁 530023 |
| Publisher_xml | – name: 广西大学 电气工程学院,广西 南宁 530004%广西电网电力调度控制中心,广西 南宁 530023 |
| SSID | ssib051374518 ssib006563412 ssib023167001 ssib000271330 ssib001129761 ssib036435470 ssib057620044 |
| Score | 2.4136236 |
| Snippet | TM73; 为了解决大规模电力系统机组组合的"维数灾"问题,提出基于Transformer神经网络的两阶段机组组合决策方法,该方法兼顾求解精度与速度.在第一阶段,考虑机组组合时段耦合... |
| SourceID | wanfang |
| SourceType | Aggregation Database |
| StartPage | 172 |
| Title | 基于改进的Transformer神经网络辅助的两阶段机组组合决策方法 |
| URI | https://d.wanfangdata.com.cn/periodical/dlzdhsb202303022 |
| Volume | 43 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text issn: 1006-6047 databaseCode: ADMLS dateStart: 20200101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text omitProxy: false ssIdentifier: ssib057620044 providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFA9le_EiiorfVHBOZTWZj2TmONnNUsSK4BZ6K5Ns1h5kBdteeq4iHvwALaJFL3rwoJei2Bb1n-lu6n_hm5dsEtseqrAMbycz7_3mvcm8l2Q-HOdq4EJ-IoKmMZBwI1XTMBM3jWu3ZmH9hOGr7Nlb_swcvzEv5ica3dqspZXl-Fqyeui6kv-xKuSBXe0q2X-wbMkUMoAG-0IKFob0SDYmkSCqQ0JNIm5TGZHIJwpoRSJJwg5RIYkCouAS745DVDAS5GmoGlkiDInsINEmyityVAsZREQKK0RqolXJCaVJooFQREEx34rVEQkFym8hopwzrxEg0SVSIkOfhAxhgFCsDqlFjfn5gZjjmBnlcmSOSGybJJFQV4-x5TxbyEoiksjmAMLKzyLGNtGlNBflh0S7VRFpxeSSLDLXEmFAZLsqwm1zNEMCJHb-quwSTWtFQD0UMuuvViir5pbhzYAilDWWhS6QQOg6KGBof7qmA0SueIEMKthWgD7CsjTKVRYJbR3kPo26gsbl7MHE3rRgNuomVBwGppRc6yIH7QGgJMPqutAx9Ma8CTLvInmnaWOZji38L-jy5eKF-7Tvp3w330N17F85q40jrOYsvfzQpiLu8vJDhQ64dB-CVvTpUMzua0upaz_9V_FLOau0d2-1t7gUW0uC66IQmE1S8PVuw5nU7dmbd-pf2z1W_5oMQW9QW98NzziMV2E_tbtFjKdnwH8GUbzglZ8THgu4qGI8YYW6eI50qZBiQoVtzPX9TcH1goO-GdythbbdE87x4pl0SucDzElnYnXxlHN7-H57d_vp6OXW3q-32Zu12vCRfXyX7TzLfrzIdjb2fj4cPvkE13e_f_j9-tvoy9fRxna2swa_4fPHw0eb2ef10frWaPPVaWeuE3VbM83i-JXmkt1lsyliyUzaC4ToBSrhMJYnPWn8wDMBY4b7yiQuVUkAPtw1DFSaQvTQT0VCU-r1BWVnnMbg_iA960ylKY3TtB-LgMZ2t6uYsqRnQO0ylSqJk3POlUIDC8XwurSw35rnj1DmgnOsuo8vOo3lByvpJXhoWI4vF33gD2PB0Ek |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%94%B9%E8%BF%9B%E7%9A%84Transformer%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E8%BE%85%E5%8A%A9%E7%9A%84%E4%B8%A4%E9%98%B6%E6%AE%B5%E6%9C%BA%E7%BB%84%E7%BB%84%E5%90%88%E5%86%B3%E7%AD%96%E6%96%B9%E6%B3%95&rft.jtitle=%E7%94%B5%E5%8A%9B%E8%87%AA%E5%8A%A8%E5%8C%96%E8%AE%BE%E5%A4%87&rft.au=%E6%AD%A6%E6%96%B0%E7%AB%A0&rft.au=%E8%B5%B5%E5%AD%90%E5%B7%8D&rft.au=%E4%BB%A3%E4%BC%9F&rft.au=%E8%B0%A2%E4%BB%A3%E9%92%B0&rft.date=2023-03-01&rft.pub=%E5%B9%BF%E8%A5%BF%E5%A4%A7%E5%AD%A6+%E7%94%B5%E6%B0%94%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%B9%BF%E8%A5%BF+%E5%8D%97%E5%AE%81+530004%25%E5%B9%BF%E8%A5%BF%E7%94%B5%E7%BD%91%E7%94%B5%E5%8A%9B%E8%B0%83%E5%BA%A6%E6%8E%A7%E5%88%B6%E4%B8%AD%E5%BF%83%2C%E5%B9%BF%E8%A5%BF+%E5%8D%97%E5%AE%81+530023&rft.issn=1006-6047&rft.volume=43&rft.issue=3&rft.spage=172&rft.epage=179&rft_id=info:doi/10.16081%2Fj.epae.202209014&rft.externalDocID=dlzdhsb202303022 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdlzdhsb%2Fdlzdhsb.jpg |