基于改进YOLOv5的矿用输送带纵向撕裂检测方法
TD67%TP751; 带式输送机输送带纵向撕裂可能引发重大安全事故.针对现有输送带撕裂检测方法精度低、抗干扰能力差的问题,提出了一种基于多尺度特征融合的纵向撕裂检测系统.该系统通过线性激光和高速相机实时捕获输送机胶带表面图像,使用LoG算法对图像进行预处理,提取图像关键区域、减少数据冗余,并通过多尺度特征融合神经网络进行撕裂检测.在检测算法方面,在神经网络主干网络中引入ConvNeXt特征增强模块,提高模型对细小撕裂纹理的特征提取能力,在Neck 部分使用双向特征金字塔网络(BiFPN)融合浅层细节纹理特征,减少下采样过程中深层网络细节信息的丢失.实验结果表明,改进后的算法对输送带纵向撕裂故...
Saved in:
| Published in | 矿业安全与环保 Vol. 51; no. 4; pp. 1 - 8 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | Chinese |
| Published |
煤矿灾害防控全国重点实验室,重庆 400037
01.08.2024
中煤科工集团重庆研究院有限公司,重庆 400039 |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1008-4495 |
| DOI | 10.19835/j.issn.1008-4495.20240577 |
Cover
| Abstract | TD67%TP751; 带式输送机输送带纵向撕裂可能引发重大安全事故.针对现有输送带撕裂检测方法精度低、抗干扰能力差的问题,提出了一种基于多尺度特征融合的纵向撕裂检测系统.该系统通过线性激光和高速相机实时捕获输送机胶带表面图像,使用LoG算法对图像进行预处理,提取图像关键区域、减少数据冗余,并通过多尺度特征融合神经网络进行撕裂检测.在检测算法方面,在神经网络主干网络中引入ConvNeXt特征增强模块,提高模型对细小撕裂纹理的特征提取能力,在Neck 部分使用双向特征金字塔网络(BiFPN)融合浅层细节纹理特征,减少下采样过程中深层网络细节信息的丢失.实验结果表明,改进后的算法对输送带纵向撕裂故障的检测精度 P 和平均精度均值(mAP)分别达到了96.34%、94.36%,优于其他主流的检测方法. |
|---|---|
| AbstractList | TD67%TP751; 带式输送机输送带纵向撕裂可能引发重大安全事故.针对现有输送带撕裂检测方法精度低、抗干扰能力差的问题,提出了一种基于多尺度特征融合的纵向撕裂检测系统.该系统通过线性激光和高速相机实时捕获输送机胶带表面图像,使用LoG算法对图像进行预处理,提取图像关键区域、减少数据冗余,并通过多尺度特征融合神经网络进行撕裂检测.在检测算法方面,在神经网络主干网络中引入ConvNeXt特征增强模块,提高模型对细小撕裂纹理的特征提取能力,在Neck 部分使用双向特征金字塔网络(BiFPN)融合浅层细节纹理特征,减少下采样过程中深层网络细节信息的丢失.实验结果表明,改进后的算法对输送带纵向撕裂故障的检测精度 P 和平均精度均值(mAP)分别达到了96.34%、94.36%,优于其他主流的检测方法. |
| Abstract_FL | Longitudinal tearing of belt conveyor may lead to significant safety accidents.However,existing algorithms suffer from low detection accuracy and poor anti-interference capability.This study proposes a longitudinal tear detection system based on multi-scale feature fusion.The system captures belt images in real-time using linear lasers and high-speed cameras,pre-processes the images using the LoG algorithm to extract key regions,thereby reducing data redundancy,and finally detects tears using the multi-scale feature fusion neural network.In terms of the detection algorithm,the ConvNeXt feature enhancement module is introduced into neural network backbone network to improve the feature extraction ability of the model for minor tear texture.Additionally,a Bidirectional Feature Pyramid Network(BiFPN)is employed in the Neck part to fuse shallow detail texture features,reducing the loss of detail information in deep layers during down-sampling.The experimental results show that the detection accuracy P and mean average precision(mAP)for longitudinal tear fault detection of the improved algorithm reach 96.34%and 94.36%,respectively,which is superior to other mainstream detection methods. |
| Author | 于庆 朱兴林 罗明华 向亮 游磊 |
| AuthorAffiliation | 煤矿灾害防控全国重点实验室,重庆 400037;中煤科工集团重庆研究院有限公司,重庆 400039 |
| AuthorAffiliation_xml | – name: 煤矿灾害防控全国重点实验室,重庆 400037;中煤科工集团重庆研究院有限公司,重庆 400039 |
| Author_FL | YOU Lei ZHU Xinglin YU Qing LUO Minghua XIANG Liang |
| Author_FL_xml | – sequence: 1 fullname: YU Qing – sequence: 2 fullname: LUO Minghua – sequence: 3 fullname: XIANG Liang – sequence: 4 fullname: YOU Lei – sequence: 5 fullname: ZHU Xinglin |
| Author_xml | – sequence: 1 fullname: 于庆 – sequence: 2 fullname: 罗明华 – sequence: 3 fullname: 向亮 – sequence: 4 fullname: 游磊 – sequence: 5 fullname: 朱兴林 |
| BookMark | eNo9jz1Lw0Ach2-oYK39Ek4uif_L3SU5cJHiGwSy6OBU7iXRVknRoNKtiltBfGkddOhQEHcp2Az2y5hL_BaKitMPnuF5-C2gStJJIoSWMNiY-4SttO1WmiY2BvAtSjmzHXAoMM-roOo_nEf1NG1JAJe5lDGvilbzUfaRXZvBtJw97YVBeMaKx6tiNCsGL-X7_WfvIn97LrJJfnNr7obl-NKMe2bSNw9T8zpcRHOxOEqj-t_W0O7G-k5jywrCze3GWmClGAi2NMcaXCkxlz7xPRYxT8dEKBVRgkEJH0tH04grDUJh7biuUCzSUnoYuAOc1NDyr_dcJLFI9pvtzulJ8l1sHnbFcfdA_nylAJh8AYShYgQ |
| ClassificationCodes | TD67%TP751 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.19835/j.issn.1008-4495.20240577 |
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| DocumentTitle_FL | Longitudinal tear detection method of mine conveyor belt based on improved YOLOv5 |
| EndPage | 8 |
| ExternalDocumentID | kyaqyhb202404001 |
| GrantInformation_xml | – fundername: 中煤科工集团重庆研究院自立重点研发科研项目 funderid: (2023ZDYF01) |
| GroupedDBID | 2B. 4A8 92I 93N ALMA_UNASSIGNED_HOLDINGS GROUPED_DOAJ PSX TCJ |
| ID | FETCH-LOGICAL-s1031-d91d06bb19b83875e57df3acce4310ca81b2d4e9cd0ac1d266ac5edbb71092093 |
| ISSN | 1008-4495 |
| IngestDate | Thu May 29 04:06:59 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Keywords | conveying belt 特征融合 feature fusion 输送带 YOLOv5 目标检测 带式输送机 纵向撕裂 belt conveyor object detection longitudinal tear |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-s1031-d91d06bb19b83875e57df3acce4310ca81b2d4e9cd0ac1d266ac5edbb71092093 |
| PageCount | 8 |
| ParticipantIDs | wanfang_journals_kyaqyhb202404001 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-01 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | 矿业安全与环保 |
| PublicationTitle_FL | Mining Safety & Environmental Protection |
| PublicationYear | 2024 |
| Publisher | 煤矿灾害防控全国重点实验室,重庆 400037 中煤科工集团重庆研究院有限公司,重庆 400039 |
| Publisher_xml | – name: 煤矿灾害防控全国重点实验室,重庆 400037 – name: 中煤科工集团重庆研究院有限公司,重庆 400039 |
| SSID | ssib006564557 ssj0002925396 ssib036434754 ssib001105362 ssib000270141 ssib051374764 |
| Score | 2.3916364 |
| Snippet | TD67%TP751; 带式输送机输送带纵向撕裂可能引发重大安全事故.针对现有输送带撕裂检测方法精度低、抗干扰能力差的问题,提出了一种基于多尺度特征融合的纵向撕裂检测系统.该... |
| SourceID | wanfang |
| SourceType | Aggregation Database |
| StartPage | 1 |
| Title | 基于改进YOLOv5的矿用输送带纵向撕裂检测方法 |
| URI | https://d.wanfangdata.com.cn/periodical/kyaqyhb202404001 |
| Volume | 51 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1008-4495 databaseCode: DOA dateStart: 20230101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0002925396 providerName: Directory of Open Access Journals |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxQxFB_aevEiiorfVDAnmXVmkswk4GVmm6WI2EsL9VTma60UVrSr0B6kijdB_Gg96KGHgniXgt2D_Wfc2fpf-F42zkSpUIUlPJI3L-9jZ_LLzEviONco7RYspblLeR66TKShm4acudwXgMYLjg9IzLa4E84usFuLfHFi8qm9uqSftfL1Q9eV_E9UoQ7iiqtk_yGytVCoABriCyVEGMojxZgoTmSHJDFRDEuhiAqJBFoSJUjSITK5O3d77gknKiISGJgmOtiEBCOx0JyKSEqUxLwH4aPYRJA4RB4Qm3DdkUekr-UHRHK8KqZEBFiDhIcEcIpE84RaBygpGR9v-QsBWwow7AW0AuGxIkIiIbhWSTehORGW8ZgZzKnzky2LuSbCpgWUniEy0noIwyJmgGhYanO0lNhqCbFn-IEUNCu2X4sErE7KG_-RtX6g8e9uBQ8myliVaLeCGon2FBoTWXaCHglqi66PUEm8PNC-05dLhU0x2Nc2NdBX0Lb4jfXXmd7kxxpjMOOEMeN8MwiZXXfv229Y9Iji29Dk0DFPAojWgx5Kb9XSW-gVQONRM9LX-Zcra-nDteVMc4B6_qRzLIBR0bNeSZiv0pgH3MBrAOPU2l4yxK2Imq_mFNAtixp4yn0Kk1UzHUdkFMiAU31kXq2l2QcYbbjxVwv0grpeN-3ds7Df_EnnhJm0TcfjO_CUM7G-fNq5OdwefB-8qjb3DvY_ju-y0YcXo-390ebng2_vfmw8G379NBrsDl-_qd5uHew8r3Y2qt2X1fu96svWGWeho-bbs645i8RdxYNQ3EL6hRdmmS8zQWGOX_Ko6NI0z0tA4F6ewuwvKFgp88JLc78A2JvmvCyyDHOdA0_Ss85U70GvPOdMywwaI5CF38AjwIMgCIFklBY574beeeeqsXbJPGtWl_4M2IUj8Fx0jjc3xiVnqv_ocXkZEHQ_u6LD_BOoEJGO |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%94%B9%E8%BF%9BYOLOv5%E7%9A%84%E7%9F%BF%E7%94%A8%E8%BE%93%E9%80%81%E5%B8%A6%E7%BA%B5%E5%90%91%E6%92%95%E8%A3%82%E6%A3%80%E6%B5%8B%E6%96%B9%E6%B3%95&rft.jtitle=%E7%9F%BF%E4%B8%9A%E5%AE%89%E5%85%A8%E4%B8%8E%E7%8E%AF%E4%BF%9D&rft.au=%E4%BA%8E%E5%BA%86&rft.au=%E7%BD%97%E6%98%8E%E5%8D%8E&rft.au=%E5%90%91%E4%BA%AE&rft.au=%E6%B8%B8%E7%A3%8A&rft.date=2024-08-01&rft.pub=%E7%85%A4%E7%9F%BF%E7%81%BE%E5%AE%B3%E9%98%B2%E6%8E%A7%E5%85%A8%E5%9B%BD%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E9%87%8D%E5%BA%86+400037&rft.issn=1008-4495&rft.volume=51&rft.issue=4&rft.spage=1&rft.epage=8&rft_id=info:doi/10.19835%2Fj.issn.1008-4495.20240577&rft.externalDocID=kyaqyhb202404001 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fkyaqyhb%2Fkyaqyhb.jpg |