神经网络类机理建模下的持续自学习控制

针对未知、时变复杂动力学系统在基于模型的控制中的动态建模问题,本文采用前向全连接神经网络对动力学系统进行数据驱动下的非机理拟合建模.通过动态线性化和归一化/反归一化数据处理,基于前向传播算法,将神经网络的网络拓扑计算过程转化成动力学系统机理模型的同构等价表达形式.与基于模型的预测与反演控制相结合,提出了神经网络类机理建模下的持续自学习控制方法,探索了神经网络在动力学系统建模与控制中的可解释性问题.以机械臂为控制对象的仿真结果表明,神经网络类机理模型与机理模型在形式上同构,在参数上近似或等价,可用于控制系统控制品质的定性、定量分析.持续自学习控制对非线性未知、时变复杂系统具有较好的动态适应能力....

Full description

Saved in:
Bibliographic Details
Published in控制理论与应用 Vol. 41; no. 5; pp. 885 - 894
Main Authors 谭天乐, 张万超, 何永宁, 周恒杰
Format Journal Article
LanguageChinese
Published 上海航天控制技术研究所,上海 201109 01.05.2024
上海市空间智能控制技术重点实验室,上海 201109%上海航天控制技术研究所,上海 201109
Subjects
Online AccessGet full text
ISSN1000-8152
DOI10.7641/CTA.2023.20771

Cover

Abstract 针对未知、时变复杂动力学系统在基于模型的控制中的动态建模问题,本文采用前向全连接神经网络对动力学系统进行数据驱动下的非机理拟合建模.通过动态线性化和归一化/反归一化数据处理,基于前向传播算法,将神经网络的网络拓扑计算过程转化成动力学系统机理模型的同构等价表达形式.与基于模型的预测与反演控制相结合,提出了神经网络类机理建模下的持续自学习控制方法,探索了神经网络在动力学系统建模与控制中的可解释性问题.以机械臂为控制对象的仿真结果表明,神经网络类机理模型与机理模型在形式上同构,在参数上近似或等价,可用于控制系统控制品质的定性、定量分析.持续自学习控制对非线性未知、时变复杂系统具有较好的动态适应能力.
AbstractList 针对未知、时变复杂动力学系统在基于模型的控制中的动态建模问题,本文采用前向全连接神经网络对动力学系统进行数据驱动下的非机理拟合建模.通过动态线性化和归一化/反归一化数据处理,基于前向传播算法,将神经网络的网络拓扑计算过程转化成动力学系统机理模型的同构等价表达形式.与基于模型的预测与反演控制相结合,提出了神经网络类机理建模下的持续自学习控制方法,探索了神经网络在动力学系统建模与控制中的可解释性问题.以机械臂为控制对象的仿真结果表明,神经网络类机理模型与机理模型在形式上同构,在参数上近似或等价,可用于控制系统控制品质的定性、定量分析.持续自学习控制对非线性未知、时变复杂系统具有较好的动态适应能力.
Abstract_FL Aiming at the problem of dynamic modeling of unknown and time-varying complex dynamic systems in model-based control,a forward fully connected neural network is used to model the dynamic system with data-driven non mechanism fitting.Through dynamic linearization and normalization/anti normalization data processing,based on the forward propagation algorithm,the topological calculation process of neural network is transformed into isomorphic equivalent expression of dynamic system mechanism model.Combined with model-based prediction and inversion con-trol,a continuous self-learning control method based on the neural network mechanism modeling is proposed,and the interpretability of neural network in dynamic system modeling and control is explored.The simulation results with the manipulator as the control object show that the neural network mechanism model is similar to the mechanism model in form,approximate or equivalent in parameters,and can be used for the qualitative and quantitative analysis of the control quality of the control system.Continuous self-learning control has good dynamic adaptability to nonlinear unknown and time-varying complex systems.
Author 张万超
何永宁
谭天乐
周恒杰
AuthorAffiliation 上海航天控制技术研究所,上海 201109;上海市空间智能控制技术重点实验室,上海 201109%上海航天控制技术研究所,上海 201109
AuthorAffiliation_xml – name: 上海航天控制技术研究所,上海 201109;上海市空间智能控制技术重点实验室,上海 201109%上海航天控制技术研究所,上海 201109
Author_FL ZHANG Wan-chao
ZHOU Heng-jie
HE Yong-ning
TAN Tian-le
Author_FL_xml – sequence: 1
  fullname: TAN Tian-le
– sequence: 2
  fullname: ZHANG Wan-chao
– sequence: 3
  fullname: HE Yong-ning
– sequence: 4
  fullname: ZHOU Heng-jie
Author_xml – sequence: 1
  fullname: 谭天乐
– sequence: 2
  fullname: 张万超
– sequence: 3
  fullname: 何永宁
– sequence: 4
  fullname: 周恒杰
BookMark eNotjz1Lw1AYhe9QwVq7-htcUt_3fuStYwl-QcGlzuXG5IoabsEgEjdBVFCsrlJEBz8QOriINvhvmlx_hgFdzhkOPIdnjtXswMaMLSC0yJe4FPQ6LQ5cVEGENVZHAPDaqPgsa6bpbgiACJwU1pnvnu5dPnTfty4fufe8HE3czVmRT8rXx-nnpbs7La9OXD7-OX8rxs_Tr4fy-qW4-JhnM0Ynadz87wbbWl3pBeted3NtI-h0vRRBoBe2fRlpPwqXBQ-lb4gUGKkjKdQ2VySqKSIdSxIxmdBopTiSkDFGgpQkLhps8Y97pK3Rdqe_Nzg8sNVjf_84SbIsqzwlqMpH_ALs2FxO
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.7641/CTA.2023.20771
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Continuous self-learning control under transformation of neural network into isomorphic eauivalent form of mechanism model
EndPage 894
ExternalDocumentID kzllyyy202405011
GroupedDBID -01
-0Y
2B.
4A8
5XA
5XJ
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CCVFK
CUBFJ
CW9
PSX
TCJ
TGT
U1G
U5S
UY8
ID FETCH-LOGICAL-s1031-b864da6db932b46f7750f4ad435c2573a6dd7ae473e7fbfa5521734e1d3754723
ISSN 1000-8152
IngestDate Thu May 29 04:08:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords continuous self-learning control
非机理建模
model prediction and inversion control
时变系统
black box system
神经网络建模
机械臂控制
neural network modeling
manipulator control
模型预测与反演控制
持续自学习控制
黑箱系统
同构等价表达
non mechanism modeling
time varying system
isomorphic equivalent expression
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1031-b864da6db932b46f7750f4ad435c2573a6dd7ae473e7fbfa5521734e1d3754723
PageCount 10
ParticipantIDs wanfang_journals_kzllyyy202405011
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationTitle 控制理论与应用
PublicationTitle_FL Control Theory & Applications
PublicationYear 2024
Publisher 上海航天控制技术研究所,上海 201109
上海市空间智能控制技术重点实验室,上海 201109%上海航天控制技术研究所,上海 201109
Publisher_xml – name: 上海航天控制技术研究所,上海 201109
– name: 上海市空间智能控制技术重点实验室,上海 201109%上海航天控制技术研究所,上海 201109
SSID ssib001102751
ssib002258297
ssib023646306
ssib057620041
ssib051372463
ssj0042201
ssib023167526
Score 2.4465206
Snippet 针对未知、时变复杂动力学系统在基于模型的控制中的动态建模问题,本文采用前向全连接神经网络对动力学系统进行数据驱动下的非机理拟合建模.通过动态线性化和归一化/反归一...
SourceID wanfang
SourceType Aggregation Database
StartPage 885
Title 神经网络类机理建模下的持续自学习控制
URI https://d.wanfangdata.com.cn/periodical/kzllyyy202405011
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1000-8152
  databaseCode: ADMLS
  dateStart: 20170701
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib057620041
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9VAcKntRQ_iJ35TwT3Jq8lmP4-b91KKWC-20FtJXvIULE-w7eH1JogKih9XKaIHPxB68CLah_-mffFnOLPZNmnroXpZNrszO7Mz2cxsktkh5FpWSGUYK1q6x0yLS9jupCaXLXBFtGAmLboCA4Vnb8uZeX5zQSyMHRk0_lpaXcmmumt_jSv5H61CG-gVo2T_QbO7g0ID1EG_UIKGoTyUjmmiqBXUJFiJY6qnXaVDTehbTNtVQqwnEi9jiy0moFrSRGA7tkhqNbWAxWmsqY4djKWaY5dug7_pB7QdmgAA0LWIDpdWOixDbeCAE2oVdmlNY9n0fQ_2NjgB6onjpGIgcbxZariD4cDezq2BsHHgGAH60GM8fRPUIIDcdgxVwymHBORFDcKdoARyBcMBFA6XUB02RwFBgmCQ8ZAa5kTYAfDmuxLG6z8T3d29Q9SJNQZOHHWYsBdZxfJBWUhE0YHXk3W6hClUIgAUD2MQhrUPUrnuvCzTMDMYz69DsccOVQeA-fUmGkZFe-F4_6RKCr3f9CnJ0fS15-wUzDyCQlW5bfYdJ35_bWlpMBigdAIRYFT8BFNSsnEyYTuzt-7UvnSIX7Qbvh0TGIa9c83wCAVR--6YiEBG9Sd7EUaKNVItwL4Wl-7u_1ecMZebfFcU1YmqOI0beyfhwun6vbR_t-H5zZ0gx_2WbdJW6-8kGVu7d4ocaxzkeZrI8uO7cviq_PWmHK6X34aj9c3y9ZPt4eboy4etH8_Lt49HLx6Vw43fT79ub3za-vl-9PLz9rPvZ8j8dDLXnmn5jCStZUyH0sq05Hkq8wx2PRmXPQX-do-nOew5umD7IujKVVpwFRWql_VSAc6xingR5phpWrHoLBnvP-gX58hkIQqZh4HqpgZfw6Y60-D9826ea5aCmTxPrvpZL_onzvLift1dOATMRXK0XgmXyPjKw9XiMvjRK9kVr_E_7p6Scg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%B1%BB%E6%9C%BA%E7%90%86%E5%BB%BA%E6%A8%A1%E4%B8%8B%E7%9A%84%E6%8C%81%E7%BB%AD%E8%87%AA%E5%AD%A6%E4%B9%A0%E6%8E%A7%E5%88%B6&rft.jtitle=%E6%8E%A7%E5%88%B6%E7%90%86%E8%AE%BA%E4%B8%8E%E5%BA%94%E7%94%A8&rft.au=%E8%B0%AD%E5%A4%A9%E4%B9%90&rft.au=%E5%BC%A0%E4%B8%87%E8%B6%85&rft.au=%E4%BD%95%E6%B0%B8%E5%AE%81&rft.au=%E5%91%A8%E6%81%92%E6%9D%B0&rft.date=2024-05-01&rft.pub=%E4%B8%8A%E6%B5%B7%E8%88%AA%E5%A4%A9%E6%8E%A7%E5%88%B6%E6%8A%80%E6%9C%AF%E7%A0%94%E7%A9%B6%E6%89%80%2C%E4%B8%8A%E6%B5%B7+201109&rft.issn=1000-8152&rft.volume=41&rft.issue=5&rft.spage=885&rft.epage=894&rft_id=info:doi/10.7641%2FCTA.2023.20771&rft.externalDocID=kzllyyy202405011
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fkzllyyy%2Fkzllyyy.jpg