基于卷积神经网络结合图像处理技术的荞麦病害识别
S24; 荞麦病害的发生极大地影响了荞麦的品质和产量,对病害的监测是确保荞麦产业健康发展的重要措施.该研究利用深度学习中卷积神经网络的多层特征提取方式,对荞麦病害的特征进行抽取,然后根据特征进行分类,最终实现对荞麦病害的判别.首先采用一种最大稳定极值区域(MSER,Maximally Stable Extremal Regions)和卷积神经网络(CNN,Convolutional Neural Network)结合的方法对荞麦发病区域进行检测,实现了病害区域与非病害区域的分离,准确定位病灶位置;然后在传统卷积神经网络框架上,通过提升网络宽度,约束参数量,加入了两级inception结构,对成...
Saved in:
| Published in | 农业工程学报 Vol. 37; no. 3; pp. 155 - 163 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | Chinese |
| Published |
西南大学计算机与信息科学学院,重庆 400715%西南大学农学与生物科技学院,重庆 400715%重庆市农业学校,重庆 401329
01.02.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1002-6819 |
| DOI | 10.11975/j.issn.1002-6819.2021.03.019 |
Cover
| Abstract | S24; 荞麦病害的发生极大地影响了荞麦的品质和产量,对病害的监测是确保荞麦产业健康发展的重要措施.该研究利用深度学习中卷积神经网络的多层特征提取方式,对荞麦病害的特征进行抽取,然后根据特征进行分类,最终实现对荞麦病害的判别.首先采用一种最大稳定极值区域(MSER,Maximally Stable Extremal Regions)和卷积神经网络(CNN,Convolutional Neural Network)结合的方法对荞麦发病区域进行检测,实现了病害区域与非病害区域的分离,准确定位病灶位置;然后在传统卷积神经网络框架上,通过提升网络宽度,约束参数量,加入了两级inception结构,对成像环境复杂,低质量荞麦图像准确地进行特征抽取.同时,为了降低采样过程中光照的影响,采用基于余弦相似度的卷积代替传统的卷积运算,对于光照不均的荞麦叶片也能够进行较好的病害识别.最后,为了验证该研究所提方法的有效性,建立一个包含8种荞麦病害图像的数据集,结果表明采用MSER和CNN结合的区域检测与两级inception识别框架的方法,对于荞麦是否发病判别的精确率、召回率、以及精确率和召回率加权调和平均值分别达到了97.54%,96.38%,97.82%;对于具体病害的识别其均值为84.86%,85.78%,85.40%.该方法在识别精度和速度方面具有良好的性能,为实现荞麦病害的自动识别提供了重要的技术支持. |
|---|---|
| AbstractList | S24; 荞麦病害的发生极大地影响了荞麦的品质和产量,对病害的监测是确保荞麦产业健康发展的重要措施.该研究利用深度学习中卷积神经网络的多层特征提取方式,对荞麦病害的特征进行抽取,然后根据特征进行分类,最终实现对荞麦病害的判别.首先采用一种最大稳定极值区域(MSER,Maximally Stable Extremal Regions)和卷积神经网络(CNN,Convolutional Neural Network)结合的方法对荞麦发病区域进行检测,实现了病害区域与非病害区域的分离,准确定位病灶位置;然后在传统卷积神经网络框架上,通过提升网络宽度,约束参数量,加入了两级inception结构,对成像环境复杂,低质量荞麦图像准确地进行特征抽取.同时,为了降低采样过程中光照的影响,采用基于余弦相似度的卷积代替传统的卷积运算,对于光照不均的荞麦叶片也能够进行较好的病害识别.最后,为了验证该研究所提方法的有效性,建立一个包含8种荞麦病害图像的数据集,结果表明采用MSER和CNN结合的区域检测与两级inception识别框架的方法,对于荞麦是否发病判别的精确率、召回率、以及精确率和召回率加权调和平均值分别达到了97.54%,96.38%,97.82%;对于具体病害的识别其均值为84.86%,85.78%,85.40%.该方法在识别精度和速度方面具有良好的性能,为实现荞麦病害的自动识别提供了重要的技术支持. |
| Author | 于显平 易泽林 雷兴华 伍胜 陈善雄 |
| AuthorAffiliation | 西南大学计算机与信息科学学院,重庆 400715%西南大学农学与生物科技学院,重庆 400715%重庆市农业学校,重庆 401329 |
| AuthorAffiliation_xml | – name: 西南大学计算机与信息科学学院,重庆 400715%西南大学农学与生物科技学院,重庆 400715%重庆市农业学校,重庆 401329 |
| Author_FL | Yi Zelin Wu Sheng Yu Xianping Chen Shanxiong Lei Xinghua |
| Author_FL_xml | – sequence: 1 fullname: Chen Shanxiong – sequence: 2 fullname: Wu Sheng – sequence: 3 fullname: Yu Xianping – sequence: 4 fullname: Yi Zelin – sequence: 5 fullname: Lei Xinghua |
| Author_xml | – sequence: 1 fullname: 陈善雄 – sequence: 2 fullname: 伍胜 – sequence: 3 fullname: 于显平 – sequence: 4 fullname: 易泽林 – sequence: 5 fullname: 雷兴华 |
| BookMark | eNo9jz1Lw0Ach2-oYK39GOKU-P_fJU1ulFJfoOCic7lLk9IiVzCIugnWUoTaFgdBS118GQQzOAgJ-mm8Xv0WVhSnB37D8-NZIjnVViEhKwg2IvfctZbdjGNlIwC1Sj5ymwJFG5gNyHMk_78vkmIcNyW4yDwAB_Okou_Sz_RS99_MU2IeJiYbmPeRycYmu9LDnr790GcDfd8xw-704nQ6TsxNZ9affKWP5vpcv7zOkq7uPS-ThUjsx2HxjwWyt1HZLW9Z1Z3N7fJ61YoRKLeisO44Pg8DBwPBuWTCiajkridcKDEmqAyoB5H0vUBIN-SyLn0hBTIUJT-QPiuQ1V_vkVCRUI1aq314oOaPNXXSCI7lTzaweTT7BiiUauc |
| ClassificationCodes | S24 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.11975/j.issn.1002-6819.2021.03.019 |
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| DocumentTitle_FL | Buckwheat disease recognition using convolution neural network combined with image processing |
| EndPage | 163 |
| ExternalDocumentID | nygcxb202103019 |
| GrantInformation_xml | – fundername: (国家自然科学基金); (重庆市自然科学基金) funderid: (国家自然科学基金); (重庆市自然科学基金) |
| GroupedDBID | -04 2B. 4A8 5XA 5XE 92G 92I 93N ABDBF ABJNI ACGFO ACGFS ACUHS AEGXH AIAGR ALMA_UNASSIGNED_HOLDINGS CCEZO CHDYS CW9 EOJEC FIJ IPNFZ OBODZ PSX RIG TCJ TGD TUS U1G U5N |
| ID | FETCH-LOGICAL-s1029-fed4489ec41ca99b3a4f2b957a50633a2bc270fb87cab5e9bdb8aba131a68cb83 |
| ISSN | 1002-6819 |
| IngestDate | Thu May 29 04:08:36 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 3 |
| Keywords | 病害 特征提取 卷积神经网络 图像处理 深度学习 荞麦 图像识别 |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-s1029-fed4489ec41ca99b3a4f2b957a50633a2bc270fb87cab5e9bdb8aba131a68cb83 |
| PageCount | 9 |
| ParticipantIDs | wanfang_journals_nygcxb202103019 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-01 |
| PublicationDateYYYYMMDD | 2021-02-01 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | 农业工程学报 |
| PublicationTitle_FL | Transactions of the Chinese Society of Agricultural Engineering |
| PublicationYear | 2021 |
| Publisher | 西南大学计算机与信息科学学院,重庆 400715%西南大学农学与生物科技学院,重庆 400715%重庆市农业学校,重庆 401329 |
| Publisher_xml | – name: 西南大学计算机与信息科学学院,重庆 400715%西南大学农学与生物科技学院,重庆 400715%重庆市农业学校,重庆 401329 |
| SSID | ssib051370041 ssj0041925 ssib001101065 ssib023167668 |
| Score | 2.4233572 |
| Snippet | S24; 荞麦病害的发生极大地影响了荞麦的品质和产量,对病害的监测是确保荞麦产业健康发展的重要措施.该研究利用深度学习中卷积神经网络的多层特征提取方式,对荞麦病害的特... |
| SourceID | wanfang |
| SourceType | Aggregation Database |
| StartPage | 155 |
| Title | 基于卷积神经网络结合图像处理技术的荞麦病害识别 |
| URI | https://d.wanfangdata.com.cn/periodical/nygcxb202103019 |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate issn: 1002-6819 databaseCode: ABDBF dateStart: 20140101 customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn omitProxy: true ssIdentifier: ssj0041925 providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxQxNNQtiB7ET_ymB3OSrZvJZCY5ZrqzFEFPLfRW5mvraYV-gPYkWEsRaiseBC314sdBcA8ehBb9NU6n_gvfy2Rnt7VqW1iGx8ub95nNS8JLhpBbsRO5QqZpPUllWnf9JIZxUPj1lLPM8xMFOQ8PJ9-7741PunenxNRQrTtQtbQwH48miweeKzlOVAEHccVTskeIbMUUEABDfOEJEYbnoWJMQ0FViwaahi4-ZYgY2aSBT0Ofavi1DABkIQJBQKXBBE2qmMWosR7ADcMGldIAAQ1Khty8JaiGiaeLxEjj0dCjUmOpBADApJSltKGRqAYKVaiY9kyTT6UwfEIacKSBV5CPQIk6GJwoG6Rhi6ZJZAuYwNiCFgH_wLBqGuZGEy163QfFKtWzwzMaKTRIun0S4DuGWqKuHCTtaSmdCQpI64QADOF9EtOCDvPQFHAnYkJaVgH3tlEc1qu8th3f2Ay8WjZO4JHSrdofMEaig7QJjw4NjXGEDbM0mrnIBGnAONYLs2-CWvGpAOMM7cDfCWHpG6uFMdK7jZ-sx6s_xOGUq8JSYSqdQLyL_REACfLUgE5VTzmyTvvbDADynIN7SNUfdAPd8xfujNsNsDIdY772pE2qNl-XlwTZcYkPJF9WXvhs53GsTJx_ThGUL8wcASWMVhJGsVOY-46ttL23sHcezySPYqTBPQR1ggw7MI1o1MiwDppBq78CYbjJUqVIBy-a8PoresE4fk-iqkLDGgxhCjKsGicJ7Sl5518qmjOGnXbUmRmYDk-cJWfsOnZEl4PSOTK0-OA8Oa1nZu1dPtkFEubvtn5uvchXvxWfusWHzWJ7rfj-stjeKLZf5esr-dsf-dO1_P1Ssb688_zJzka3eLO0u7r5a-tj8fpZ_uXrbnc5X_l8kUy2womx8br9akt9jmEtXTtLXVeqLHFZEikV88htO7ESfiRgOcQjJ04cv9GOpZ9EschUnMYyiiPGWeTJJJb8Eql1Hnayy2Sk4SSuhAVaJqLUTXk7km3JPOH4UmQ8cdgVMmKdMG1H5bnpfYG6-n-Sa-RUf0C4TmrzswvZDVhpzMc3bXR_A7QI1lA |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%8D%B7%E7%A7%AF%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%BB%93%E5%90%88%E5%9B%BE%E5%83%8F%E5%A4%84%E7%90%86%E6%8A%80%E6%9C%AF%E7%9A%84%E8%8D%9E%E9%BA%A6%E7%97%85%E5%AE%B3%E8%AF%86%E5%88%AB&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E9%99%88%E5%96%84%E9%9B%84&rft.au=%E4%BC%8D%E8%83%9C&rft.au=%E4%BA%8E%E6%98%BE%E5%B9%B3&rft.au=%E6%98%93%E6%B3%BD%E6%9E%97&rft.date=2021-02-01&rft.pub=%E8%A5%BF%E5%8D%97%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%9C%BA%E4%B8%8E%E4%BF%A1%E6%81%AF%E7%A7%91%E5%AD%A6%E5%AD%A6%E9%99%A2%2C%E9%87%8D%E5%BA%86+400715%25%E8%A5%BF%E5%8D%97%E5%A4%A7%E5%AD%A6%E5%86%9C%E5%AD%A6%E4%B8%8E%E7%94%9F%E7%89%A9%E7%A7%91%E6%8A%80%E5%AD%A6%E9%99%A2%2C%E9%87%8D%E5%BA%86+400715%25%E9%87%8D%E5%BA%86%E5%B8%82%E5%86%9C%E4%B8%9A%E5%AD%A6%E6%A0%A1%2C%E9%87%8D%E5%BA%86+401329&rft.issn=1002-6819&rft.volume=37&rft.issue=3&rft.spage=155&rft.epage=163&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2021.03.019&rft.externalDocID=nygcxb202103019 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg |