基于RGB图像光谱重建的鱼糜掺假定量检测研究

TP391.4; 实现基于RGB图像的光谱重建对降低光谱的硬件要求、扩大其实际应用具有重大意义.该研究以鱼糜掺假检测为例,比较多元多项式最小二乘回归算法(polynomial multivariate least-squares regression,PMLR)与深度学习HRNet网络对光谱重建的性能,建立基于重建光谱多种掺假鱼糜检测模型并验证其实际应用的有效性.结果表明,2种方法的重建光谱误差较小,HRNet网络、PMLR算法重建光谱的均方根误差(root mean square error,RMSE)分别为0.010 4和0.012 6,大多数掺假检测模型有较高的预测准确性,其预测相关系数...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 39; no. 20; pp. 275 - 282
Main Authors 冯耀泽, 万仕文, 潘胜, 栾鹏, 孔丽琴, 朱明
Format Journal Article
LanguageChinese
Published 华中农业大学信息学院,武汉 430070%华中农业大学工学院,武汉 430070 01.10.2023
农业农村部水产养殖重点实验室,武汉 430070%华中农业大学工学院,武汉 430070
华中农业大学工学院,武汉 430070
农业农村部长江中下游农业装备实验室,武汉 430070
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.202307013

Cover

Abstract TP391.4; 实现基于RGB图像的光谱重建对降低光谱的硬件要求、扩大其实际应用具有重大意义.该研究以鱼糜掺假检测为例,比较多元多项式最小二乘回归算法(polynomial multivariate least-squares regression,PMLR)与深度学习HRNet网络对光谱重建的性能,建立基于重建光谱多种掺假鱼糜检测模型并验证其实际应用的有效性.结果表明,2种方法的重建光谱误差较小,HRNet网络、PMLR算法重建光谱的均方根误差(root mean square error,RMSE)分别为0.010 4和0.012 6,大多数掺假检测模型有较高的预测准确性,其预测相关系数大于0.91,预测均方根误差小于9%.在基于重建光谱建立的掺假检测模型中,效果最佳的是基于PMLR算法重建光谱使用标准正态变量变换(standard normal variate,SNV)预处理的极限学习机回归模型,其预测均方根误差为3.954 4%、预测相关系数为0.983 0.因此,PMLR算法和HRNet网络均能较好的实现基于RGB图像的光谱重建,且重建光谱均能实现对鱼糜掺假样本的较好检测结果,为基于重建光谱的食品和农产品品质与安全检测提供了新思路.
AbstractList TP391.4; 实现基于RGB图像的光谱重建对降低光谱的硬件要求、扩大其实际应用具有重大意义.该研究以鱼糜掺假检测为例,比较多元多项式最小二乘回归算法(polynomial multivariate least-squares regression,PMLR)与深度学习HRNet网络对光谱重建的性能,建立基于重建光谱多种掺假鱼糜检测模型并验证其实际应用的有效性.结果表明,2种方法的重建光谱误差较小,HRNet网络、PMLR算法重建光谱的均方根误差(root mean square error,RMSE)分别为0.010 4和0.012 6,大多数掺假检测模型有较高的预测准确性,其预测相关系数大于0.91,预测均方根误差小于9%.在基于重建光谱建立的掺假检测模型中,效果最佳的是基于PMLR算法重建光谱使用标准正态变量变换(standard normal variate,SNV)预处理的极限学习机回归模型,其预测均方根误差为3.954 4%、预测相关系数为0.983 0.因此,PMLR算法和HRNet网络均能较好的实现基于RGB图像的光谱重建,且重建光谱均能实现对鱼糜掺假样本的较好检测结果,为基于重建光谱的食品和农产品品质与安全检测提供了新思路.
Abstract_FL Hyperspectral technology has been widely used in many fields due to its excellent performance characteristics such as high sensitivity,fine resolution,multi-channel data acquisition and processing capabilities,and non-destructive testing.However,despite its outstanding performance in data acquisition and information extraction,it also faces the challenges of high requirements and costs of hardware equipment.Hardware equipment such as high-precision optics,high-quality detectors,and complex data acquisition devices required for hyperspectral imaging have become one of the key factors limiting its popularity and application.To overcome this dilemma,researchers have begun to explore the reconstruction of RGB images into hyperspectral images by extracting information from traditional RGB images through spectral reconstruction techniques at relatively low cost.This innovative approach significantly reduces the complexity and cost of spectral data acquisition and provides a brand new way for wider application of hyperspectral technology.In the study of this paper,we use surimi adulteration detection as an example to explore the performance of different spectral reconstruction algorithms in depth.By mixing the dorsal muscle of silver carp with commercially available starch in different ratios and simulating the real state of surimi when it is sold,we successfully acquired RGB images and corresponding spectral data of a series of samples.In order to ensure the scientific validity and reliability of the experiment,we adopted the spectral-physical-chemical value covariance distance method(SPXY)for the sample set and divided the data set into calibration and validation sets according to the ratio of 5:3.In the process of spectral reconstruction,we explored two mainstream methods,the multivariate polynomial least squares regression algorithm(PMLR)and the deep learning hierarchical regression network(HRNet).Comparative experimental results show that the HRNet-based reconstruction technique has relative and root-mean-square errors of 0.010 4 between the spectra and the actual spectra,respectively,while the PMLR-based algorithm corresponds to relative and root-mean-square errors of 0.012 6.These results indicate that both methods are within acceptable error ranges,which provides a subsequent experimental results provide a solid foundation.In order to verify the reliability of the reconstructed spectra in practical applications,we established models of extreme learning machine regression(ELMR),support vector machine regression(SVR),and partial least squares regression(PLSR)based on the reconstructed spectra,and combined S-G convolutional smoothing(SG),mean centering(MC),standard normal variable transformation(SNV),derivative smoothing(DE),and normalization(NOR)methods were used to preprocess the spectra with a view to improving the model performance.By using corrected correlation coefficient(Rc)corrected root mean square error(RMSEC)predicted correlation coefficient(RP)and root mean square error of prediction(RMSEP)as evaluation metrics,we successfully detected the adulteration ratio of adulterated surimi.The experimental results show that the support vector machine regression model with standard normal transform(SNV)preprocessing achieves the best results with a prediction correlation coefficient(RP)of 0.983 0 and a root mean square error of prediction(RMSEP)of 3.954 4%in the model based on the reconstruction of spectra by the PMLR algorithm.In the model based on the reconstructed spectrum of deep learning HRNet network,the support vector machine regression model,also using SNV preprocessing,achieved the best performance,with a prediction correlation coefficient of 0.998 7 and a prediction root-mean-square error of 4.080 8%.Therefore,the PMLR algorithm and HRNet network reconstruction technique based on RGB images not only realized efficient spectral reconstruction,but also provided a reliable solution for surimi adulteration detection.This research result provides new ideas and methods for quality and safety detection of food and agricultural products using low-cost hardware devices.
Author 朱明
潘胜
孔丽琴
栾鹏
冯耀泽
万仕文
AuthorAffiliation 华中农业大学工学院,武汉 430070;农业农村部长江中下游农业装备实验室,武汉 430070;农业农村部水产养殖重点实验室,武汉 430070%华中农业大学工学院,武汉 430070;华中农业大学信息学院,武汉 430070%华中农业大学工学院,武汉 430070;农业农村部长江中下游农业装备实验室,武汉 430070
AuthorAffiliation_xml – name: 华中农业大学工学院,武汉 430070;农业农村部长江中下游农业装备实验室,武汉 430070;农业农村部水产养殖重点实验室,武汉 430070%华中农业大学工学院,武汉 430070;华中农业大学信息学院,武汉 430070%华中农业大学工学院,武汉 430070;农业农村部长江中下游农业装备实验室,武汉 430070
Author_FL FENG Yaoze
ZHU Ming
PAN Sheng
LUAN Peng
KONG Liqin
WAN Shiwen
Author_FL_xml – sequence: 1
  fullname: FENG Yaoze
– sequence: 2
  fullname: WAN Shiwen
– sequence: 3
  fullname: PAN Sheng
– sequence: 4
  fullname: LUAN Peng
– sequence: 5
  fullname: KONG Liqin
– sequence: 6
  fullname: ZHU Ming
Author_xml – sequence: 1
  fullname: 冯耀泽
– sequence: 2
  fullname: 万仕文
– sequence: 3
  fullname: 潘胜
– sequence: 4
  fullname: 栾鹏
– sequence: 5
  fullname: 孔丽琴
– sequence: 6
  fullname: 朱明
BookMark eNo9jz9Lw0AYh2-oYK39FA5Oie97d_kHLlq0CgVBdC6X5K60yBUMom6KShCxXZyqoODkIhbRIYqfxkvMt7CiOD3wG54fzwyp6L6WhMwh2IiB5yz07G6SaBsBqOX6GNgUKAMPkFVI9X-dJvUk6YbgIPMAOFbJornNPrPBZnPZXH-Yk6E5O_96GpfppXnLitFpOX4vnm_yQWaOU_M4KtNhfn-Uv1wUd1fFw-ssmVJiJ5H1P9bI9urKVmPNam001xtLLStBoIGlfB-pdHyJkRCxx5QLlPMI0eHSg8CPw1BS5DJQsXClYMAFKtdxQgxprChnNTL_690XWgndaff6e7t68tjWh53oIPxppZPGgH0Dpn9iIA
ClassificationCodes TP391.4
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.202307013
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitle_FL Quantitative detection of surimi adulteration based on spectral reconstruction of RGB images
EndPage 282
ExternalDocumentID nygcxb202320029
GrantInformation_xml – fundername: (湖北省重点研发计划项目); (湖北省重点研发计划项目); (国家重点研发计划)
  funderid: (湖北省重点研发计划项目); (湖北省重点研发计划项目); (国家重点研发计划)
GroupedDBID -04
2B.
4A8
5XA
5XE
92G
92I
93N
ABDBF
ABJNI
ACGFO
ACGFS
ACUHS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CW9
EOJEC
FIJ
IPNFZ
OBODZ
PSX
RIG
TCJ
TGD
TUS
U1G
U5N
ID FETCH-LOGICAL-s1029-f8812e58e1caad73f60244c1154e7098dbbe214e9fda6ea304a1f655b1b2df243
ISSN 1002-6819
IngestDate Thu May 29 04:08:36 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 20
Keywords deep learning
multiple polynomials least squares regression
spectral reconstruction
光谱重建
深度学习
hyperspectral
多元多项式最小二乘回归
高光谱
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1029-f8812e58e1caad73f60244c1154e7098dbbe214e9fda6ea304a1f655b1b2df243
PageCount 8
ParticipantIDs wanfang_journals_nygcxb202320029
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationTitle 农业工程学报
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2023
Publisher 华中农业大学信息学院,武汉 430070%华中农业大学工学院,武汉 430070
农业农村部水产养殖重点实验室,武汉 430070%华中农业大学工学院,武汉 430070
华中农业大学工学院,武汉 430070
农业农村部长江中下游农业装备实验室,武汉 430070
Publisher_xml – name: 华中农业大学工学院,武汉 430070
– name: 农业农村部水产养殖重点实验室,武汉 430070%华中农业大学工学院,武汉 430070
– name: 农业农村部长江中下游农业装备实验室,武汉 430070
– name: 华中农业大学信息学院,武汉 430070%华中农业大学工学院,武汉 430070
SSID ssib051370041
ssj0041925
ssib001101065
ssib023167668
Score 2.442982
Snippet TP391.4; 实现基于RGB图像的光谱重建对降低光谱的硬件要求、扩大其实际应用具有重大意义.该研究以鱼糜掺假检测为例,比较多元多项式最小二乘回归算法(polynomial...
SourceID wanfang
SourceType Aggregation Database
StartPage 275
Title 基于RGB图像光谱重建的鱼糜掺假定量检测研究
URI https://d.wanfangdata.com.cn/periodical/nygcxb202320029
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RAdOgHiB7ET_ymoHOSrZlkksyAl5kmsQh6kBZ6K8kmqacV2i1oT4pKEbG9eKqCgicvYhE9rOJP8WS69l_43mS6G2pFW1jCY-bN-5iXyXsz-2aGkCupYO2c4bqbm8IERQZFS_JMtsDTMJa5QcnMP6a3bgfTs_zmnD83MvqjkbW03M0m2yt77is5iFWhDOyKu2T3YdkBUSgAGOwLT7AwPP_LxjT2qUyoVjTm-BTxnRvaFGqqYwSER0ViAPhJGguqHaoZjSUVIRURVmltKIRUAgWOVYCgp7BEe1QCEABlgwNEGDYEQMWIb-kkiKM8TJsAQAOaxubKoZIbAGgGzTjYkAoMcZBcGFIgCWD6Bl8YCsAloiowAiio2nk7bGuVoELA07L1qI6GKIYuyspRQ-kjigRC4RAF2kRUCkMFNW3WgOzYhSA4qJg0F0fcYZpd_TobcSLso5qpivZWT3GqwoZWUJVQxYx6zGgzqJJUSqpcGABGlp1eAMMIeZV7eHwSdf2DMh709H74NdwX-rdAWCdk_Vt9WJQdx67T9Fb1pTU28HHrW6D-9Kky9I1TRRaTAxaT2N_Avd5KvOvQ8s6Dhfb9DDEwCUiOknEXvK4zRsaVjnQyDNgZrkkMPIqL5zIEwwmwzzy8fmGQtIUpC77JX7BCHCKXd0S89ncBzYa8Tpl2Fhqx48wxctRO-iZUPYKPk5GVuyfIEbWwaA--KU6S69Wb3s_eGozf6tX36vF69fTZr4-b26svqq-9_saT7c1v_U-vt9Z61aPV6sPG9ur61ruHW5-f99--7L__corMJvHM1HTL3mzSWmKYb1YKiKsLXxSsnaZ56JUBhMq8jUdjFaEjRZ5lhct4Ics8DYrUc3jKysD3M_h85qXLvdNkrHOvU5whE14aumnbSSVMnbhI8yxgKefSLWXuh14gz5IJq_u8_XItze-yzrl_o5wnh4fD6wIZ6y4uFxchGu9ml6xJfwPBHKIL
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8ERGB%E5%9B%BE%E5%83%8F%E5%85%89%E8%B0%B1%E9%87%8D%E5%BB%BA%E7%9A%84%E9%B1%BC%E7%B3%9C%E6%8E%BA%E5%81%87%E5%AE%9A%E9%87%8F%E6%A3%80%E6%B5%8B%E7%A0%94%E7%A9%B6&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%86%AF%E8%80%80%E6%B3%BD&rft.au=%E4%B8%87%E4%BB%95%E6%96%87&rft.au=%E6%BD%98%E8%83%9C&rft.au=%E6%A0%BE%E9%B9%8F&rft.date=2023-10-01&rft.pub=%E5%8D%8E%E4%B8%AD%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E5%AD%A6%E9%99%A2%2C%E6%AD%A6%E6%B1%89+430070%25%E5%8D%8E%E4%B8%AD%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%B7%A5%E5%AD%A6%E9%99%A2%2C%E6%AD%A6%E6%B1%89+430070&rft.issn=1002-6819&rft.volume=39&rft.issue=20&rft.spage=275&rft.epage=282&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.202307013&rft.externalDocID=nygcxb202320029
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg