基于Landsat数据和农田概率时间序列子序列的退耕监测方法
提出一种利用Landsat数据和时间序列子序列的退耕监测方法.首先利用随机森林方法,对每年的Landsat数据统计值进行分类,得到每个像元属于农田的概率,由每年的农田概率构成年际的农田概率时间序列;然后,对退耕(农田变为非农田)及相关地物类别的农田概率时间序列进行分析,得到代表退耕的时间序列片段,即特征子序列;最后,计算未知像元的农田概率时间序列与退耕的特征子序列之间的距离,提取退耕区域和退耕时间.利用内蒙古自治区察右后旗土牧尔台镇地区的多年Landsat时间序列影像验证该方法的有效性,结果表明,与现有的方法相比,该方法在退耕区域和退耕时间提取方面均获得更高的精度....
Saved in:
| Published in | 北京大学学报(自然科学版) Vol. 58; no. 2; pp. 271 - 281 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | Chinese |
| Published |
北京大学地球与空间科学学院遥感与地理信息系统研究所,北京100871
20.03.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0479-8023 |
| DOI | 10.13209/j.0479-8023.2021.120 |
Cover
| Abstract | 提出一种利用Landsat数据和时间序列子序列的退耕监测方法.首先利用随机森林方法,对每年的Landsat数据统计值进行分类,得到每个像元属于农田的概率,由每年的农田概率构成年际的农田概率时间序列;然后,对退耕(农田变为非农田)及相关地物类别的农田概率时间序列进行分析,得到代表退耕的时间序列片段,即特征子序列;最后,计算未知像元的农田概率时间序列与退耕的特征子序列之间的距离,提取退耕区域和退耕时间.利用内蒙古自治区察右后旗土牧尔台镇地区的多年Landsat时间序列影像验证该方法的有效性,结果表明,与现有的方法相比,该方法在退耕区域和退耕时间提取方面均获得更高的精度. |
|---|---|
| AbstractList | 提出一种利用Landsat数据和时间序列子序列的退耕监测方法.首先利用随机森林方法,对每年的Landsat数据统计值进行分类,得到每个像元属于农田的概率,由每年的农田概率构成年际的农田概率时间序列;然后,对退耕(农田变为非农田)及相关地物类别的农田概率时间序列进行分析,得到代表退耕的时间序列片段,即特征子序列;最后,计算未知像元的农田概率时间序列与退耕的特征子序列之间的距离,提取退耕区域和退耕时间.利用内蒙古自治区察右后旗土牧尔台镇地区的多年Landsat时间序列影像验证该方法的有效性,结果表明,与现有的方法相比,该方法在退耕区域和退耕时间提取方面均获得更高的精度. |
| Author | 吴伟伟 李培军 |
| AuthorAffiliation | 北京大学地球与空间科学学院遥感与地理信息系统研究所,北京100871 |
| AuthorAffiliation_xml | – name: 北京大学地球与空间科学学院遥感与地理信息系统研究所,北京100871 |
| Author_FL | LI Peijun WU Weiwei |
| Author_FL_xml | – sequence: 1 fullname: WU Weiwei – sequence: 2 fullname: LI Peijun |
| Author_xml | – sequence: 1 fullname: 吴伟伟 – sequence: 2 fullname: 李培军 |
| BookMark | eNo9T0tLw0AY3EMFa-1P8OwpcffbvPYoxRcEvOi57GY3YpAtGMUeg4gKan1gDajgzZtS8AHm95iN_RcGKsLADDMww8yghu5phdAcwTahgNlCYmPHZ1aAgdqAgdgEcAM1_81p1E7TbYEJQMA8hzRRWD4V38Ug5FqmfM8MR-bitbw5L48fq9uReT6sBicm_xzn72VxWZ7m5cvVRFT3R-Ms-8mG1cO1-Tgzd1_mbTiLpmK-k6r2H7fQ5vLSRmfVCtdX1jqLoZUSDMyS4BM38N3IJZhx4UUucxiPgLmijoUKQHnCCSgB4lMaKcZcFUiGeSxBKt-nLTQ_6T3gOuZ6q5v09nd1vdgViez3RX29BsaM_gI6uGj6 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.13209/j.0479-8023.2021.120 |
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitle_FL | A Method for Monitoring Cropland Retirement Using Landsat Images and Time Series Subsequence of Cropland Probability |
| EndPage | 281 |
| ExternalDocumentID | bjdxxb202202009 |
| GrantInformation_xml | – fundername: 国家自然科学基金 funderid: (42071307) |
| GroupedDBID | -01 23M 2B. 4A8 5GY 8FE 8FH 92E 92I 93N AAABJ AAQEF ABJNI ABLSY ABPYQ ABUWG ABVRV ACECN ACGFS ACPRK ACTRF ADCJG ADGMY ADMLS ADMQQ ADRFT ADZSZ AENOO AEXCR AFKRA AFSCH AFTSM AFZMG AHIBC AIVZI AJZVN ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI BPHCQ BVBZV CCEZO CCPQU CCVFK CW9 HCIFZ LK8 M7P P2P PDI PHGZM PHGZT PMFND PQQKQ PSX TCJ TGP U1G U5K UY8 |
| ID | FETCH-LOGICAL-s1029-d2715875c5109ab6c5949ac295b029be82e6b483121733ce995e8d90afd2de773 |
| ISSN | 0479-8023 |
| IngestDate | Thu May 29 04:00:37 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Keywords | 变化监测 退耕 Landsat数据 时间序列子序列 概率时间序列 |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-s1029-d2715875c5109ab6c5949ac295b029be82e6b483121733ce995e8d90afd2de773 |
| PageCount | 11 |
| ParticipantIDs | wanfang_journals_bjdxxb202202009 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-20 |
| PublicationDateYYYYMMDD | 2022-03-20 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationTitle | 北京大学学报(自然科学版) |
| PublicationTitle_FL | Acta Scientiarum Naturalium Universitatis Pekinensis |
| PublicationYear | 2022 |
| Publisher | 北京大学地球与空间科学学院遥感与地理信息系统研究所,北京100871 |
| Publisher_xml | – name: 北京大学地球与空间科学学院遥感与地理信息系统研究所,北京100871 |
| SSID | ssib012289641 ssib051370299 ssj0030172 ssib001522812 ssib002258124 ssib000862120 ssib030194702 ssib008143590 ssib002040163 ssib006703675 ssib038076459 |
| Score | 2.3438144 |
| Snippet | 提出一种利用Landsat数据和时间序列子序列的退耕监测方法.首先利用随机森林方法,对每年的Landsat数据统计值进行分类,得到每个像元属于农田的概率,由每年的农田概率构成年... |
| SourceID | wanfang |
| SourceType | Aggregation Database |
| StartPage | 271 |
| Title | 基于Landsat数据和农田概率时间序列子序列的退耕监测方法 |
| URI | https://d.wanfangdata.com.cn/periodical/bjdxxb202202009 |
| Volume | 58 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: East & South Asia Database issn: 0479-8023 databaseCode: BVBZV dateStart: 20170101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.proquest.com/eastsouthasia omitProxy: false ssIdentifier: ssj0030172 providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central issn: 0479-8023 databaseCode: BENPR dateStart: 20170101 customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.proquest.com/central omitProxy: true ssIdentifier: ssj0030172 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1da9RAMJTriy9i_cBv7sEFfciZ7G6S3cfkmqNIKSIt9K0kuZzShxPsFUqfiogKav3AWlDBN9-Ugh9gf493Z_-FM5O9XGoLVqGEYWdmdz5ymZk0O2tZV7iAGJsJx1ZuktgSApStEp7YmVDSTeEmkcVXvnP-zIK8segtTtTqla-WVntpI1s_dF_J_3gVxsCvuEv2HzxbTgoDAIN_4QoehuuRfMxij-kWi0IWS7yqeBZ37iY9FvtMeyxyEFDTLIyJlDPVREABFoCAaWloQiDjOKJipgJiD1jks1gTIJELF2gRu8JBAMJppp3DUDAzjEhkVw7-xYo-qfAIFTHt4hIR0Ee0FsCaRgQrDsMc5cs0Z5PmJA1Dkj-ULBwJAJKPAdACaGAVMEoThcF1AxaGpJokjQLkRQFKLkBpIi64ylcjZDOHtJeIAVOPgDEJSD-NVjOu0CP7RtX3KVCKO8LmTvkLOKpe4CZ0UIByKEHEilYDLTQ5vnTQQb1KAGg0Czm5wyX7-GgNo48aiV9dyydUi4XkKeRqIQocFEUERMQOizp4Fxl5CheQ03nzoI7Y4qk4CsfEHhloG3sDVgOlpyoPBF6Neoa1SKB4cQbPgdgsOPW2XW6UkzfA_m7DNdbf3_Y8XW6vraXoIKfYoTvJIW47NWsyiudu3tpXkru8WgJwvq-lHkQp16-mrB7mtOOYgx3oKim0wgJi_J9jF2bT_rhkgHioZTBumYfnNVT7MXmuACyW-EU2KPAdC2aDI53NLkI0xvXDTEGbB7udpHu7kufOn7COmwK1HhZPmylrYv3OSWvKpAAr9aumT_21U9Zs_8Puz91N88gZbO0Mnn3uv3raf_h--Hpn8PH-cPPRYPv73vbX_u7z_uPt_qcXBTB8-2BvY-PXxtbw3cvBtyeDNz8GX7ZOWwuteL45Y5vDWewVFz-Za4PTPRV4GQR1naR-5mmpk4xrLwV0miue-6lUwuVuIESWa-3lqq2dpNPm7TwIxBmr1r3bzc9addHx8SCIRGvlQX2Yap7rrCNlKvwOVH_ZOatuTLJkHr4rS3_cHuf_TnLBOjb-uV-0ar17q_klKCh66WVzT_0GC_7OMA |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8ELandsat%E6%95%B0%E6%8D%AE%E5%92%8C%E5%86%9C%E7%94%B0%E6%A6%82%E7%8E%87%E6%97%B6%E9%97%B4%E5%BA%8F%E5%88%97%E5%AD%90%E5%BA%8F%E5%88%97%E7%9A%84%E9%80%80%E8%80%95%E7%9B%91%E6%B5%8B%E6%96%B9%E6%B3%95&rft.jtitle=%E5%8C%97%E4%BA%AC%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E7%89%88%EF%BC%89&rft.au=%E5%90%B4%E4%BC%9F%E4%BC%9F&rft.au=%E6%9D%8E%E5%9F%B9%E5%86%9B&rft.date=2022-03-20&rft.pub=%E5%8C%97%E4%BA%AC%E5%A4%A7%E5%AD%A6%E5%9C%B0%E7%90%83%E4%B8%8E%E7%A9%BA%E9%97%B4%E7%A7%91%E5%AD%A6%E5%AD%A6%E9%99%A2%E9%81%A5%E6%84%9F%E4%B8%8E%E5%9C%B0%E7%90%86%E4%BF%A1%E6%81%AF%E7%B3%BB%E7%BB%9F%E7%A0%94%E7%A9%B6%E6%89%80%2C%E5%8C%97%E4%BA%AC100871&rft.issn=0479-8023&rft.volume=58&rft.issue=2&rft.spage=271&rft.epage=281&rft_id=info:doi/10.13209%2Fj.0479-8023.2021.120&rft.externalDocID=bjdxxb202202009 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fbjdxxb%2Fbjdxxb.jpg |