基于特征优选随机森林算法的农耕区土地利用分类

S25; 为了提高农耕区土地利用分类精度,该文采用较高空间分辨率和丰富光谱信息的Sentinel-2数据生成光谱特征、无红边波段的植被指数、红边指数和纹理特征4种基本特征变量,并对以上特征变量优选后进行特征重要性排序,进而构建7种特征组合方案,基于随机森林算法和支持向量机对农耕区土地利用信息进行提取并对比验证分类精度.研究结果表明:通过特征优选的随机森林算法进行土地利用信息提取效果最佳,总体精度达到88.24%,Kappa系数为0.84,精度优于相同特征变量下的支持向量机分类方法.该方法能够有效提高农耕区土地利用分类精度,可为土地资源监测、管理提供技术支持和理论参考....

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 36; no. 4; pp. 244 - 250
Main Authors 王李娟, 孔钰如, 杨小冬, 徐艺, 梁亮, 王树果
Format Journal Article
LanguageChinese
Published 江苏师范大学地理测绘与城乡规划学院,徐州,221116%国家农业信息化工程技术研究中心,北京,100097 15.02.2020
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2020.04.029

Cover

Abstract S25; 为了提高农耕区土地利用分类精度,该文采用较高空间分辨率和丰富光谱信息的Sentinel-2数据生成光谱特征、无红边波段的植被指数、红边指数和纹理特征4种基本特征变量,并对以上特征变量优选后进行特征重要性排序,进而构建7种特征组合方案,基于随机森林算法和支持向量机对农耕区土地利用信息进行提取并对比验证分类精度.研究结果表明:通过特征优选的随机森林算法进行土地利用信息提取效果最佳,总体精度达到88.24%,Kappa系数为0.84,精度优于相同特征变量下的支持向量机分类方法.该方法能够有效提高农耕区土地利用分类精度,可为土地资源监测、管理提供技术支持和理论参考.
AbstractList S25; 为了提高农耕区土地利用分类精度,该文采用较高空间分辨率和丰富光谱信息的Sentinel-2数据生成光谱特征、无红边波段的植被指数、红边指数和纹理特征4种基本特征变量,并对以上特征变量优选后进行特征重要性排序,进而构建7种特征组合方案,基于随机森林算法和支持向量机对农耕区土地利用信息进行提取并对比验证分类精度.研究结果表明:通过特征优选的随机森林算法进行土地利用信息提取效果最佳,总体精度达到88.24%,Kappa系数为0.84,精度优于相同特征变量下的支持向量机分类方法.该方法能够有效提高农耕区土地利用分类精度,可为土地资源监测、管理提供技术支持和理论参考.
Author 王树果
梁亮
王李娟
杨小冬
徐艺
孔钰如
AuthorAffiliation 江苏师范大学地理测绘与城乡规划学院,徐州,221116%国家农业信息化工程技术研究中心,北京,100097
AuthorAffiliation_xml – name: 江苏师范大学地理测绘与城乡规划学院,徐州,221116%国家农业信息化工程技术研究中心,北京,100097
Author_FL Yang Xiaodong
Wang Shuguo
Liang Liang
Wang Lijuan
Kong Yuru
Xu Yi
Author_FL_xml – sequence: 1
  fullname: Wang Lijuan
– sequence: 2
  fullname: Kong Yuru
– sequence: 3
  fullname: Yang Xiaodong
– sequence: 4
  fullname: Xu Yi
– sequence: 5
  fullname: Liang Liang
– sequence: 6
  fullname: Wang Shuguo
Author_xml – sequence: 1
  fullname: 王李娟
– sequence: 2
  fullname: 孔钰如
– sequence: 3
  fullname: 杨小冬
– sequence: 4
  fullname: 徐艺
– sequence: 5
  fullname: 梁亮
– sequence: 6
  fullname: 王树果
BookMark eNo9j7tKA0EYhaeIYIx5DLHa8f9nd_ZSavAGARutw-wtJMgEHETtIkhIQExjiITFFDbaBMXKVXyazK55C1cUqwOnON93VkhJdmREyBoCRfQcvtGmLaUkRQBm2C56lAEDChYF5pVI-b9fJlWlWj5wNB0AC8tkS0_TeXqTD9705-X8427RHSwmwyxJs4dZdj_OZ-PsdZRPrnQv-eqO9HWqk6lOnnX_Kb991P1e_vK-SpZicayi6l9WyNHO9mFtz6gf7O7XNuuGwkLDEHYQxsIKI4xMz2OcOQEILER5zAVg5NuBG3NmeTYHyxQicJFz3w0BuRsGIZgVsv67eyZkLGSz0e6cnsiC2JAXzeDc__kMVoEyvwHQkmeF
ClassificationCodes S25
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2020.04.029
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitle_FL Classification of land use in farming areas based on feature optimization random forest algorithm
EndPage 250
ExternalDocumentID nygcxb202004029
GrantInformation_xml – fundername: 国家自然科学基金项目; 江苏省自然科学基金项目; 江苏高校优势学科建设工程资助项目联合资助
  funderid: (41971305,41701380,41401397); (BK20140237); 江苏高校优势学科建设工程资助项目联合资助
GroupedDBID -04
2B.
4A8
5XA
5XE
92G
92I
93N
ABDBF
ABJNI
ACGFO
ACGFS
ACUHS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CW9
EOJEC
FIJ
IPNFZ
OBODZ
PSX
RIG
TCJ
TGD
TUS
U1G
U5N
ID FETCH-LOGICAL-s1029-a6cdfa4de1e3992527c0a12025f5a01eb6c8f524965043aac8155b8d0158dcd03
ISSN 1002-6819
IngestDate Thu May 29 04:08:35 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords 特征优选
红边指数
农耕区
土地利用分类
随机森林算法
Sentinel-2
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1029-a6cdfa4de1e3992527c0a12025f5a01eb6c8f524965043aac8155b8d0158dcd03
PageCount 7
ParticipantIDs wanfang_journals_nygcxb202004029
PublicationCentury 2000
PublicationDate 2020-02-15
PublicationDateYYYYMMDD 2020-02-15
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-15
  day: 15
PublicationDecade 2020
PublicationTitle 农业工程学报
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2020
Publisher 江苏师范大学地理测绘与城乡规划学院,徐州,221116%国家农业信息化工程技术研究中心,北京,100097
Publisher_xml – name: 江苏师范大学地理测绘与城乡规划学院,徐州,221116%国家农业信息化工程技术研究中心,北京,100097
SSID ssib051370041
ssj0041925
ssib001101065
ssib023167668
Score 2.5292165
Snippet S25; 为了提高农耕区土地利用分类精度,该文采用较高空间分辨率和丰富光谱信息的Sentinel-2数据生成光谱特征、无红边波段的植被指数、红边指数和纹理特征4种基本特征变量,并...
SourceID wanfang
SourceType Aggregation Database
StartPage 244
Title 基于特征优选随机森林算法的农耕区土地利用分类
URI https://d.wanfangdata.com.cn/periodical/nygcxb202004029
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxQxNNQtiB7ET_ymB3PcOjM7mUmOye4MxYOnFnorszOz9bRCP6DtqYKUFkQvlkpZ7MGLXoriyVX8NZ1d-y987026O2rx6zKEl-TlfU1eXkheGLsHHiMHx5DWPZGndT9MnXoStvHV1NQFE5J4fwZPWzwMZub8B_NifqK2Xjm1tLrSnk43Tr1X8j9aBRjoFW_J_oNmR0gBAGXQL3xBw_D9Kx3zSHAVc6N55ONXRjwKuVTcKKwyEawTqarJleSRwmMNUAsFBY1jHgVcNal7wHWD64ggEVch4tFlIeCmwZVACPbyEbOkjpGkcxKCICUegXAgqSwYh6ok14q6-1xLCwEMADEuN6a6Pq4gB7IljoiMADFEAHSXBiG6xXWAtEkNVSdWQ9xH1ARwtEgeAjupeNyEOgMpKAXPkgi4pDduQp1LUqFexpaqcZpKK13lkAxA3rq6ewKhMr7lIkb2TkJ0SS7EQIkR2ANBIKTJZYPIAAGFFfZGQgxxKEkMG0H8gewMKZXEVDIK-LHgo_q1i5gBm1WYRGbHmIF3aOPBD1ZhhQSt8HisBwE7breQapXhpkV9I26C0zQEhZhGDNDgdGwNQgWnKY90BnZTGh82hiqHNBKioeAQhFnToIAZhFPSiThDa-u6CUCXbghVHCt63kBa92g9b5n6xs4wftWNljlB7YrMK1MT_-rsVSjI2-MI06MRplHPlL_Y7qX9mE-9u76YrrWxDfgvT51hkx4sCJwam9SmZeJxLOHidsnI2XmYMiIYx-bCbeDLEKPzZHiaQtDRCkvGWcZPiLz_OxLptmC3k3QXKwvb2Yvsgo1Ip3Q5vVxiExuPLrPzenHJZuXJrzBTHPSP-s-HO5-Kr0-Ovrw63tw53n8x6PUHbw4Hr_eGh3uDj7vD_afFVu_b5m7xrF_0Dore-2L73fDl22J7a_jh81U2F0ezzZm6fXylvuzikbgkSLNO4me5m2PuauHBNJ64QLfoiMRx83aQyo7w8LkJx28kSSohMmnLDMILmaWZ07jGat3H3fw6m3JSiEIz6aWe3_adDPdoZNLIIfRzYIi0c4NNWQks2Ml1eeEnLd38c5Nb7Nz4B7_NaitLq_kdCBhW2netar8Dg93G8g
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E7%89%B9%E5%BE%81%E4%BC%98%E9%80%89%E9%9A%8F%E6%9C%BA%E6%A3%AE%E6%9E%97%E7%AE%97%E6%B3%95%E7%9A%84%E5%86%9C%E8%80%95%E5%8C%BA%E5%9C%9F%E5%9C%B0%E5%88%A9%E7%94%A8%E5%88%86%E7%B1%BB&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E7%8E%8B%E6%9D%8E%E5%A8%9F&rft.au=%E5%AD%94%E9%92%B0%E5%A6%82&rft.au=%E6%9D%A8%E5%B0%8F%E5%86%AC&rft.au=%E5%BE%90%E8%89%BA&rft.date=2020-02-15&rft.pub=%E6%B1%9F%E8%8B%8F%E5%B8%88%E8%8C%83%E5%A4%A7%E5%AD%A6%E5%9C%B0%E7%90%86%E6%B5%8B%E7%BB%98%E4%B8%8E%E5%9F%8E%E4%B9%A1%E8%A7%84%E5%88%92%E5%AD%A6%E9%99%A2%2C%E5%BE%90%E5%B7%9E%2C221116%25%E5%9B%BD%E5%AE%B6%E5%86%9C%E4%B8%9A%E4%BF%A1%E6%81%AF%E5%8C%96%E5%B7%A5%E7%A8%8B%E6%8A%80%E6%9C%AF%E7%A0%94%E7%A9%B6%E4%B8%AD%E5%BF%83%2C%E5%8C%97%E4%BA%AC%2C100097&rft.issn=1002-6819&rft.volume=36&rft.issue=4&rft.spage=244&rft.epage=250&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2020.04.029&rft.externalDocID=nygcxb202004029
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg