基于特征优选的北疆典型区域非农化遥感监测

S29; 该研究旨在准确把握耕地"非农化"的时空格局,为制定合理的土地利用和耕地保护政策提供重要依据.随着特征提取技术和分类算法的进步,利用遥感影像进行大规模耕地动态监测变得更加准确和高效.该研究选用Sentinel-2卫星影像,探讨了不同算法和特征变量在耕地非农化监测中的优势.首先提取了 4类特征共计31个指标,并通过主成分分析(principipal component analysis,PCA)和相关系数矩阵进行特征优选,获得了 12个关键指标,并设计了 5种特征组合方案.随后,采用7种基础算法执行影像分类,并通过"单阶段"和"二阶段&q...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 40; no. 5; pp. 275 - 286
Main Authors 曹宇娟, 戴建国, 张国顺, 夏明辉, 赵庆展, 穆正阳, 许淼淼
Format Journal Article
LanguageChinese
Published 兵团空间信息工程技术研究中心,石河子 832003 01.03.2024
石河子大学信息科学与技术学院,石河子 832003
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.202308171

Cover

Abstract S29; 该研究旨在准确把握耕地"非农化"的时空格局,为制定合理的土地利用和耕地保护政策提供重要依据.随着特征提取技术和分类算法的进步,利用遥感影像进行大规模耕地动态监测变得更加准确和高效.该研究选用Sentinel-2卫星影像,探讨了不同算法和特征变量在耕地非农化监测中的优势.首先提取了 4类特征共计31个指标,并通过主成分分析(principipal component analysis,PCA)和相关系数矩阵进行特征优选,获得了 12个关键指标,并设计了 5种特征组合方案.随后,采用7种基础算法执行影像分类,并通过"单阶段"和"二阶段"两种分类策略,提取耕地"非农化"信息.研究结果表明,有效选择多种特征变量和算法对于提高监测精度至关重要.在所有测试的模型中,采用Softmax构建的二阶段模型精度最高,最优特征组合为光谱特征+光谱指数特征+纹理特征,特征变量维度减少至12个.总体精度、平均用户精度、平均生产者精度和Kappa系数分别达到94.92%、95.16%、93.15%和0.88.对比2020年和2022年研究区数据发现,耕地转变为非农化用地的面积为146.153 km2,而非农化用地转变为耕地的面积为123.074 km2,导致耕地净减少23.079 km2.综上所述,该研究提出的耕地"非农化"监测方法可以为相关的地物信息提取和耕地资源保护与可持续利用等研究提供技术支持和方法参考.
AbstractList S29; 该研究旨在准确把握耕地"非农化"的时空格局,为制定合理的土地利用和耕地保护政策提供重要依据.随着特征提取技术和分类算法的进步,利用遥感影像进行大规模耕地动态监测变得更加准确和高效.该研究选用Sentinel-2卫星影像,探讨了不同算法和特征变量在耕地非农化监测中的优势.首先提取了 4类特征共计31个指标,并通过主成分分析(principipal component analysis,PCA)和相关系数矩阵进行特征优选,获得了 12个关键指标,并设计了 5种特征组合方案.随后,采用7种基础算法执行影像分类,并通过"单阶段"和"二阶段"两种分类策略,提取耕地"非农化"信息.研究结果表明,有效选择多种特征变量和算法对于提高监测精度至关重要.在所有测试的模型中,采用Softmax构建的二阶段模型精度最高,最优特征组合为光谱特征+光谱指数特征+纹理特征,特征变量维度减少至12个.总体精度、平均用户精度、平均生产者精度和Kappa系数分别达到94.92%、95.16%、93.15%和0.88.对比2020年和2022年研究区数据发现,耕地转变为非农化用地的面积为146.153 km2,而非农化用地转变为耕地的面积为123.074 km2,导致耕地净减少23.079 km2.综上所述,该研究提出的耕地"非农化"监测方法可以为相关的地物信息提取和耕地资源保护与可持续利用等研究提供技术支持和方法参考.
Abstract_FL The spatiotemporal pattern of non-agriculturalization can be accurately and rapidly captured for the rational formulation of land use and cultivated land protection.Remote sensing imagery has been more precise and efficient for the large-scale dynamic monitoring of cultivated land,with the advancements in feature extraction and classification.There are also different and feature variables during dynamic monitoring of cultivated land.In this study,Sentinel-2 satellite imagery was employed to monitor the non-agriculturalization of cultivated land.The experimental and validation zones were selected from the northern part of Xinjiang,a vital agricultural production base in China.The reclaimed areas were also in the Eighth Division of the Xinjiang Production and Construction Corps in Shihezi City.The data source was comprised of Sentinel-2 remote sensing images,covering the research area as of July 17,2022,and August 16,2020.The images were improved to facilitate the automatic extraction of information,according to the non-agricultural land use on cultivated land.Initially,the spectral indices and gray-level co-occurrence matrix were calculated to obtain 3 1 features,including spectral,spectral index,and texture features.Subsequently,Pearson correlation coefficients were computed for the eight band features,seven non-red edge spectral indices,and eight red edge spectral indices,leading to the removal of redundant features with weak classification and high correlation.Principal component analysis(PCA)was applied to extract the first three components of eight texture features.Feature importance scores were ranked using the random forest(RF)with the Gini index,resulting in the selection of optimal features:red,green,blue,narrow NIR(B8A),normalized difference vegetation index(NDVI),modified soil adjusted vegetation index(MSAVI),red-edge chlorophyll index(Clre),red-edge vegetation index(REDVI),triangular vegetation index(TVI),PCA1,PCA2 and PCA3 of texture features.12 features and the original were selected to construct five classification schemes,including four optimal combinations(Scheme 1-3 and Scheme 5)and the original(Scheme 4).Seven classification algorithms were then utilized to evaluate:RF,artificial neural network(ANN),minimum distance(MID),maximum likelihood(MAL),mahalanobis distance(MAD),support vector machine(SVM),and Softmax.The results included:1)The importance ranking of feature variables was as follows:band features,red edge spectral index features,non-red edge spectral index features,texture features.2)Accuracy improvement depended mainly on the effective selection of multiple feature variables and algorithms.The two-stage model was constructed using Softmax.The highest accuracy was achieved with the optimal combination of feature variables,namely band+spectral index+texture features.The dimensionality of the feature variable was reduced to 12.The overall accuracy,average user's accuracy,average producer's accuracy,and Kappa coefficient were 94.92%,95.16%,93.15%,and 0.88,respectively.3)A comparison of 2020 and 2022 data revealed that there was an area of 146.153 km2 transitioning from cultivated land to non-agricultural use,while an area of 123.074 km2 was transitioned from non-agricultural to cultivated land.Overall,the cultivated land decreased by 23.079 km2.In conclusion,the non-agriculturalization of cultivated land can provide technical support and references for the extraction of land cover information,particularly for the resource protection and sustainable utilization of cultivated land.
Author 夏明辉
许淼淼
赵庆展
戴建国
曹宇娟
张国顺
穆正阳
AuthorAffiliation 石河子大学信息科学与技术学院,石河子 832003;兵团空间信息工程技术研究中心,石河子 832003
AuthorAffiliation_xml – name: 石河子大学信息科学与技术学院,石河子 832003;兵团空间信息工程技术研究中心,石河子 832003
Author_FL DAI Jianguo
ZHANG Guoshun
ZHAO Qingzhan
XIA Minghui
MU Zhengyang
XU Miaomiao
CAO Yujuan
Author_FL_xml – sequence: 1
  fullname: CAO Yujuan
– sequence: 2
  fullname: DAI Jianguo
– sequence: 3
  fullname: ZHANG Guoshun
– sequence: 4
  fullname: XIA Minghui
– sequence: 5
  fullname: ZHAO Qingzhan
– sequence: 6
  fullname: MU Zhengyang
– sequence: 7
  fullname: XU Miaomiao
Author_xml – sequence: 1
  fullname: 曹宇娟
– sequence: 2
  fullname: 戴建国
– sequence: 3
  fullname: 张国顺
– sequence: 4
  fullname: 夏明辉
– sequence: 5
  fullname: 赵庆展
– sequence: 6
  fullname: 穆正阳
– sequence: 7
  fullname: 许淼淼
BookMark eNo9j8tKw0AYhWdRwVr7FC5cJc4_tyTgRoo3KLjRdZlkktIiU3AQdWehFkpDwU0VL83KRxA0iE_TachbGFBcHA6cxfdxNlBND3SM0BZgFyDw-E7f7RmjXcCYOMKHwCWYUOyDBzVU_1_XUdOYXog5UA9jBnW0a7N8mc-Kyaf9Hi6_HsvbSfE0sulDMR_buw-7mNo0t1lWvi7s-MWm83L4thplxfP96n26idYSeW7i5l830NnB_mnryGmfHB639tqOAUwCh9MoZpzTMPF9LgMRJ0R5JPSYIjTiUSirhAIr5sdSAfETJRgQ4QlJIBKK0gba_uVeSZ1I3e30B5cXujJ29E03ug6rrwzzSkV_ADHSYrQ
ClassificationCodes S29
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.202308171
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitle_FL Remote sensing monitoring of non-agriculturalization in typical areas of the Northern Xinjiang of China based on feature optimization
EndPage 286
ExternalDocumentID nygcxb202405029
GrantInformation_xml – fundername: (国家自然科学基金); 兵团英才支持计划
GroupedDBID -04
2B.
4A8
5XA
5XE
92G
92I
93N
ABDBF
ABJNI
ACGFO
ACGFS
ACUHS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CW9
EOJEC
FIJ
IPNFZ
OBODZ
PSX
RIG
TCJ
TGD
TUS
U1G
U5N
ID FETCH-LOGICAL-s1029-53ce4553bf885a96ef2d72b74d23c5cba5cbb60d48ead128fd6412676a21c6d33
ISSN 1002-6819
IngestDate Thu May 29 04:08:36 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Keywords 特征优选
耕地
non-agriculturalization
Sentinel-2
cultivated land
remote sensing
非农化
遥感
feature selection
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1029-53ce4553bf885a96ef2d72b74d23c5cba5cbb60d48ead128fd6412676a21c6d33
PageCount 12
ParticipantIDs wanfang_journals_nygcxb202405029
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationTitle 农业工程学报
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2024
Publisher 兵团空间信息工程技术研究中心,石河子 832003
石河子大学信息科学与技术学院,石河子 832003
Publisher_xml – name: 兵团空间信息工程技术研究中心,石河子 832003
– name: 石河子大学信息科学与技术学院,石河子 832003
SSID ssib051370041
ssj0041925
ssib001101065
ssib023167668
Score 2.457319
Snippet S29; 该研究旨在准确把握耕地"非农化"的时空格局,为制定合理的土地利用和耕地保护政策提供重要依据.随着特征提取技术和分类算法的进步,利用遥感影像进行大规模耕地动态监...
SourceID wanfang
SourceType Aggregation Database
StartPage 275
Title 基于特征优选的北疆典型区域非农化遥感监测
URI https://d.wanfangdata.com.cn/periodical/nygcxb202405029
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3batRAdOgFRB_EK94p6DzJ1mSSmcyAL0k3oQj61ELfSpJN6tMW2i1onyzUQmkRfKnipfvkDwiCFvFrmi79C885O7sbasUL7A7DnJNzzeScGebC2L1UumWQ5jhRJbyG70vTyNJSNlRZaF2qXGW0w_vxEzU77z9akAtj459rq5bWOtl0vn7qvpL_8Sq0gV9xl-w_eHZIFBqgDv6FEjwM5V_5mMeSm4RHIY99LHXM44BrwyODoCiGPJFAM9xoHhtc1gBQwDGA7COOBlBALYprRS3woCbK8HhkcZAF8YIf0DFNhCJIcTMzoKOIhctDyWOF9BEZKEfcuNgSAVpUz4ZrFHxkaohLFBAFKLUVIGzyUBHNEECDdwQbgHZf1xCEDagCZJI6itY8IlWjaKAGVJojFIn2CZ0hBLUIXT6awSCykHMnxFGTmTVZ19QnTYQ_WjVGr_nAmtKSDgVpZUgMg3ZHwUDzBPmhqGC75DQTkObgvJiMFZJZQWLjDwgqa0GwFD6ecO1B5yHrw_vhkfUFVciaxrkP31jH8WoxCYOW0jay2KDVP-PKdk5Zj0D9i2hsMiP654z_GidNIClQIofpIYdpgUNS7fZvxTlxEHn7-VL-LENrOtIRZpxNCoikzgSbDKNmlIyScBfnGYZRQuBZC2o0qJWuh1cqDBdi4TIESWsSrBBn2N2BiA9-LyBtsmuXaXuplg_OXWDn7UBuKuz3yotsbP3pJXYuXFqxh9kUl9nDqntwePCqt_2t-rFx-P3t8Yvt3rvNavdNb2-revm12t-pdg-qbvf443619aHa3Tve-HS02e29f330ZecKm0_iuZnZhr2tpLHq4hoy6eWFL6WXlVrL1KiiFK1AZIHfEl4u8yyFf6aclq_h4w1ZYdlSvivANKlwc9XyvKtsor3cLq6xqcDo1OBkgSoKX-QakmrAVgWMfjIhHHOdTVndF-3XaHXxhHdu_BnlJjs76hq32ERnZa24DRl2J7tjXfoTgU6aBg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E7%89%B9%E5%BE%81%E4%BC%98%E9%80%89%E7%9A%84%E5%8C%97%E7%96%86%E5%85%B8%E5%9E%8B%E5%8C%BA%E5%9F%9F%E9%9D%9E%E5%86%9C%E5%8C%96%E9%81%A5%E6%84%9F%E7%9B%91%E6%B5%8B&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E6%9B%B9%E5%AE%87%E5%A8%9F&rft.au=%E6%88%B4%E5%BB%BA%E5%9B%BD&rft.au=%E5%BC%A0%E5%9B%BD%E9%A1%BA&rft.au=%E5%A4%8F%E6%98%8E%E8%BE%89&rft.date=2024-03-01&rft.pub=%E5%85%B5%E5%9B%A2%E7%A9%BA%E9%97%B4%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E6%8A%80%E6%9C%AF%E7%A0%94%E7%A9%B6%E4%B8%AD%E5%BF%83%2C%E7%9F%B3%E6%B2%B3%E5%AD%90+832003&rft.issn=1002-6819&rft.volume=40&rft.issue=5&rft.spage=275&rft.epage=286&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.202308171&rft.externalDocID=nygcxb202405029
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg