基于中医体质的老年人动脉粥样硬化性心血管疾病预测模型的开发研究

R543.5; 背景 动脉粥样硬化性心血管疾病(ASCVD)最有效的预防策略是实施基层管理,其核心措施是进行风险评估,现有老年人ASCVD预测模型不能很好地指导中医基层管理,因此,需将中医元素融入预测模型的开发,以指导ASCVD中西医结合基层管理.目的 构建并验证基于中医体质的老年人ASCVD预测模型.方法 纳入 2017年在华苑街社区卫生服务中心、陈塘庄街社区卫生服务中心、向阳路街社区卫生服务中心、大邱庄镇中心卫生院进行健康查体的 1 418 名老年人(≥65 岁)为研究对象,收集研究对象一般资料,对研究对象进行体质辨识.于 2017-2022 年随访研究对象ASCVD发病情况(临床结局),...

Full description

Saved in:
Bibliographic Details
Published in中国全科医学 Vol. 27; no. 15; pp. 1878 - 1885
Main Authors 高颖, 许欣宜, 刘洋, 杨晓琨
Format Journal Article
LanguageChinese
Published 300381 天津市,国家中医针灸临床医学研究中心 20.05.2024
300381 天津市,天津中医药大学第一附属医院
Subjects
Online AccessGet full text
ISSN1007-9572
DOI10.12114/j.issn.1007-9572.2023.0406

Cover

Abstract R543.5; 背景 动脉粥样硬化性心血管疾病(ASCVD)最有效的预防策略是实施基层管理,其核心措施是进行风险评估,现有老年人ASCVD预测模型不能很好地指导中医基层管理,因此,需将中医元素融入预测模型的开发,以指导ASCVD中西医结合基层管理.目的 构建并验证基于中医体质的老年人ASCVD预测模型.方法 纳入 2017年在华苑街社区卫生服务中心、陈塘庄街社区卫生服务中心、向阳路街社区卫生服务中心、大邱庄镇中心卫生院进行健康查体的 1 418 名老年人(≥65 岁)为研究对象,收集研究对象一般资料,对研究对象进行体质辨识.于 2017-2022 年随访研究对象ASCVD发病情况(临床结局),随访截止于 2022-11-30.将研究对象数据按照 8∶2 随机拆分为训练集和验证集,在训练集中,采用向前逐步法构建老年人ASCVD常规预测模型(模型1)和老年人ASCVD常规+体质预测模型(模型 2).绘制基于中医体质的老年人ASCVD预测模型列线图.绘制校准曲线及进行Hosmer-Lemeshow拟合优度检验判定模型的校准度.绘制受试者工作特征(ROC)曲线并计算ROC曲线下面积(AUC)判定模型的区分度.使用AUC、净重分类改善度(NRI)、综合判别指数(IDI)、临床决策曲线(DCA)对模型2与模型1进行比较,评估改善效能.结果 训练集(n=1 127)与验证集(n=291)研究对象一般资料比较,差异无统计学意义(P>0.05).多因素Logistic分析结果显示,模型1包含性别、年龄、腰围、收缩压、三酰甘油、BMI、收缩压×高血压用药史,共计 7 种预测变量;模型 2 包含性别、年龄、腰围、收缩压、三酰甘油、BMI、收缩压×高血压用药史、体质类型,共计 8 种预测变量.Hosmer-Lemeshow拟合优度检验结果示模型 2 拟合度良好,Delong检验结果显示,模型 2 的AUC高 于 模 型 1(Z=2.741,P=0.006),NRI=0.511(95%CI=0.359~0.663,P<0.001),IDI=0.038(95%CI=0.024~0.051,P<0.001),提示添加体质预测变量可提高模型预测的准确度.临床效用对比结果示,在 5%~74%阈值概率下,使用模型2预测严重老年人ASCVD事件的净收益率优于模型1.结论 本研究构建了一个包含性别、年龄、腰围、收缩压、三酰甘油、BMI、收缩压×高血压用
AbstractList R543.5; 背景 动脉粥样硬化性心血管疾病(ASCVD)最有效的预防策略是实施基层管理,其核心措施是进行风险评估,现有老年人ASCVD预测模型不能很好地指导中医基层管理,因此,需将中医元素融入预测模型的开发,以指导ASCVD中西医结合基层管理.目的 构建并验证基于中医体质的老年人ASCVD预测模型.方法 纳入 2017年在华苑街社区卫生服务中心、陈塘庄街社区卫生服务中心、向阳路街社区卫生服务中心、大邱庄镇中心卫生院进行健康查体的 1 418 名老年人(≥65 岁)为研究对象,收集研究对象一般资料,对研究对象进行体质辨识.于 2017-2022 年随访研究对象ASCVD发病情况(临床结局),随访截止于 2022-11-30.将研究对象数据按照 8∶2 随机拆分为训练集和验证集,在训练集中,采用向前逐步法构建老年人ASCVD常规预测模型(模型1)和老年人ASCVD常规+体质预测模型(模型 2).绘制基于中医体质的老年人ASCVD预测模型列线图.绘制校准曲线及进行Hosmer-Lemeshow拟合优度检验判定模型的校准度.绘制受试者工作特征(ROC)曲线并计算ROC曲线下面积(AUC)判定模型的区分度.使用AUC、净重分类改善度(NRI)、综合判别指数(IDI)、临床决策曲线(DCA)对模型2与模型1进行比较,评估改善效能.结果 训练集(n=1 127)与验证集(n=291)研究对象一般资料比较,差异无统计学意义(P>0.05).多因素Logistic分析结果显示,模型1包含性别、年龄、腰围、收缩压、三酰甘油、BMI、收缩压×高血压用药史,共计 7 种预测变量;模型 2 包含性别、年龄、腰围、收缩压、三酰甘油、BMI、收缩压×高血压用药史、体质类型,共计 8 种预测变量.Hosmer-Lemeshow拟合优度检验结果示模型 2 拟合度良好,Delong检验结果显示,模型 2 的AUC高 于 模 型 1(Z=2.741,P=0.006),NRI=0.511(95%CI=0.359~0.663,P<0.001),IDI=0.038(95%CI=0.024~0.051,P<0.001),提示添加体质预测变量可提高模型预测的准确度.临床效用对比结果示,在 5%~74%阈值概率下,使用模型2预测严重老年人ASCVD事件的净收益率优于模型1.结论 本研究构建了一个包含性别、年龄、腰围、收缩压、三酰甘油、BMI、收缩压×高血压用
Abstract_FL Background The most effective prevention strategy for atherosclerotic cardiovascular disease(ASCVD)is primary management,with the core measure of risk assessment.The existing prediction models for ASCVD for the elderly are not able to guide TCM primary management well.Therefore,it is necessary to integrate TCM elements into the development of prediction models to guide the primary management of ASCVD with combined traditional Chinese and western medicine.Objective To construct and validate the ASCVD prediction model for the elderly based on TCM constitution.Methods A total of 1 418 elderly people who underwent physical examination at Huayuan Street Community Health Service Center,Chentangzhuang Street Community Health Service Center,Xiangyang Road Street Community Health Service Center and Daqiuzhuang Town Central Health Center in 2017 were included as the study subjects.General data of the study subjects were collected and constitution identification was performed.The incidence of ASCVD(clinical outcome)was followed up from 2017 to 2022.The follow-up will end at 2022-11-30.The data of the subjects were randomly divided into a training set(n=1 127)and validation set(n=291)according to 8∶2.In the training set,the conventional ASCVD prediction model for the elderly(model 1)and the conventional ASCVD+constitution prediction model for the elderly(model 2)were constructed by using the forward stepwise method.The nomogram of ASCVD prediction model for the elderly based on TCM constitution was plotted.The calibration curve was plotted and the Hosmer-Lemeshow goodness of fit test was performed to determine the calibration of the model.The receiver operating characteristic curve was plotted and the area under the curve(AUC)was calculated to determine the discrimination of the model.AUC,Net Reclassification Index(NRI),Integrated Discrimination Improvement(IDI),and Decision Curve Analysis(DCA)were used to compare model 2 with model 1 to evaluate the improvement efficacy of model 2.Results There was no significant difference in the general data between the training set and validation set(P>0.05).The results of multivariate analysis showed that model 1 included 7 predictors of gender,age,waist circumference,systolic blood pressure,triacylglycerol(TG),BMI,systolic blood pressure×hypertension medication history.model 2 included 8 predictors of gender,age,waist circumference,systolic blood pressure,TG,BMI,systolic blood pressure×hypertension medication history,and constitution type.Hosmer-Lemeshow goodness-of-fit test showed good fit of model 2;Delong test results showed that AUC of model 2 was higher than that of model 1(Z=2.741,P=0.006),NRI=0.511(95%CI=0.359-0.663,P<0.001),IDI=0.038(95%CI=0.024-0.051,P<0.001),suggesting that the addition of constitution predictors could improve the accuracy of model prediction.The clinical utility comparison results showed that the net benefit of model 2 to predict severe ASCVD events in the elderly was better than model 1 at a threshold probability of 5%to 74%.Conclusion In this study,a ASCVD prediction model for the elderly was constructed including 8 predictor variables of gender,age,waist circumference,systolic blood pressure,TG,BMI,systolic blood pressure×hypertension medication history,and constitution type.After testing,the differentiation and calibration performed well,which was better than the conventional prediction model,and can be applied to the individualized risk assessment of ASCVD in the elderly and guide the primary management of ASCVD with combined traditional Chinese and western medicine.
Author 许欣宜
刘洋
杨晓琨
高颖
AuthorAffiliation 300381 天津市,天津中医药大学第一附属医院;300381 天津市,国家中医针灸临床医学研究中心
AuthorAffiliation_xml – name: 300381 天津市,天津中医药大学第一附属医院;300381 天津市,国家中医针灸临床医学研究中心
Author_FL GAO Ying
LIU Yang
YANG Xiaokun
XU Xinyi
Author_FL_xml – sequence: 1
  fullname: GAO Ying
– sequence: 2
  fullname: XU Xinyi
– sequence: 3
  fullname: LIU Yang
– sequence: 4
  fullname: YANG Xiaokun
Author_xml – sequence: 1
  fullname: 高颖
– sequence: 2
  fullname: 许欣宜
– sequence: 3
  fullname: 刘洋
– sequence: 4
  fullname: 杨晓琨
BookMark eNo9kEtLw0AAhPdQwar9FR48Je4zmxyl-IKCFz1KSdpuaZUUDeLjFLEetEURpYIHbQSxgnqQ-oqvP5PNxn9hQPE0zMA3AzMEMm7DrQAwiqCOMEJ0vK7XPM_VEYRcsxjHOoaY6JBCIwOy_-kgyHlezUktZRwxKwsW5UUYhQfRy51sv0Ufx0m_p86aib8tX_tRGMr9XtLcUw9XcfdZBbey3Yn9a_m1kwS-ug9U51Od7n5fNuPHVtwL5HkrZeW7Lw-PVPdE3TyNgAFhL3uV3J8Og4Wpyfn8jFaYm57NTxQ0D0FsacjENoQlVqJYUMOxqGGSEhPChEzwCnG4RRxsGw4m3C5jzm3hUIxMUSbCMsqIkGEw9tu7brvCdqvFemNt1U0Xi1vVlaXNjfQMihhEFvkBT6l63w
ClassificationCodes R543.5
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.12114/j.issn.1007-9572.2023.0406
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Research on the Development of Atherosclerotic Cardiovascular Disease Prediction Model for the Elderly Based on TCM Constitution
EndPage 1885
ExternalDocumentID zgqkyx202415019
GrantInformation_xml – fundername: 天津市家庭医生团队能力建设实践课题
  funderid: (JYZ202201)
GroupedDBID -05
2B.
4A8
92F
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CIEJG
CW9
GROUPED_DOAJ
PSX
TCJ
TGQ
U1G
U5O
ID FETCH-LOGICAL-s1029-182a00c5c42f46b94683c5ff805f7e3b793b2a6b237ad277afb4218fd3f96d133
ISSN 1007-9572
IngestDate Thu May 29 04:06:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords Risk prediction model
风险预测模型
Atherosclerosis
动脉粥样硬化
中医体质类型
Aged
老年人
冠心病
Coronary disease
Constitutional type(TCM)
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1029-182a00c5c42f46b94683c5ff805f7e3b793b2a6b237ad277afb4218fd3f96d133
PageCount 8
ParticipantIDs wanfang_journals_zgqkyx202415019
PublicationCentury 2000
PublicationDate 2024-05-20
PublicationDateYYYYMMDD 2024-05-20
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-20
  day: 20
PublicationDecade 2020
PublicationTitle 中国全科医学
PublicationTitle_FL Chinese General Practice
PublicationYear 2024
Publisher 300381 天津市,国家中医针灸临床医学研究中心
300381 天津市,天津中医药大学第一附属医院
Publisher_xml – name: 300381 天津市,天津中医药大学第一附属医院
– name: 300381 天津市,国家中医针灸临床医学研究中心
SSID ssib007457159
ssj0058485
ssib007693709
ssib017477037
ssib007457160
ssib007457161
ssib001103591
ssib051368463
Score 2.38419
Snippet R543.5; 背景 动脉粥样硬化性心血管疾病(ASCVD)最有效的预防策略是实施基层管理,其核心措施是进行风险评估,现有老年人ASCVD预测模型不能很好地指导中医基层管理,因此,需将...
SourceID wanfang
SourceType Aggregation Database
StartPage 1878
Title 基于中医体质的老年人动脉粥样硬化性心血管疾病预测模型的开发研究
URI https://d.wanfangdata.com.cn/periodical/zgqkyx202415019
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1007-9572
  databaseCode: DOA
  dateStart: 20220101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0058485
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RANJQq4kUUFb8p6Jxk12SSTGaOyTZLEfTUQi9Skt2kgrCibUF7WrEetEURpYIH7QpiBfUg9Wv9-jObzfovfO8l7mbbih-XMPvmfb8k781sZkbTTkUysiMeBCUnClUJUoAshXYQl6LI5HpswH0U40Lhc-fFxJR1dtqeHhndWfhqaWE-LNcWt11X8j9RBRjEFVfJ_kNk-0wBAG2IL1whwnD9qxgz32aqyjyX-RZepU8Nydxx7JIV5nkEGWfKZL5knsVcyXyHKUC2ECJ1qCUR2VPYm_FBhkDuErJETKmQyuPMtZkvmKszz0GIazC3kstSAruAoesQwyqTJBRwAIjIPrZRumCeTw2HSWComMtJH4ADK49EECEa6BOkrzNwrhBDwKwyRQxBH2VRA6wQxYJ7yCHKQ1cgoZ37AVRVRsFXNmK6_dlKUs1jSuY6qkKPRHuANepaYa5JxD5TlQEKsJVELNC30hv0CKbGSQVoKAoOKAKek8VZGG7hBwRc7z83Jv3jepokWWhrxhhjYqMqksMTM2Qoqii2uylAKEftQC7EH80gHC9zsIvB3-KVrZ4e4kwBLyQ5nJ5WtjOUBbMdGn497XYhpxkyO2Qpr48MmZ2xtCX3chhaU_JFIeW-kDK4yyxDrti04znVUIuzVy5dv4YOhYEJ7t67g0N21gtTI1TWG7jR5CAPOZbtFMtw-l0Y5me_C_gCivDBNnUwCHcg0fXLbtswhaRTIbIKDmpyOsq3b8Iu7eQvA8_83jxa9teIg8ZsoUKd3KvtyYeWY272ntinjSxe3K9dSJ62O-27nY-vk5XPna8Pehvr6eOlXvNG8mmj024nd9Z7S7fTt8-7ax_S1qtkZbXbfJF8v9lrNdM3rXT1W_ro1o9nS913y931VvJkGWiTL83k3v107WH68v0BbarqT1YmSvmRKqU5Az90MyQPdL1m1yweWyJUlpBmzY5jqduxE5khZOuQByLkphPUueMEcWjBICCum7ESdcM0D2qjjcuN6JA2put1PY4ioAa3BEE9FNKoWbi3U4ibiqrD2ljujpn8lTk3syncR_6MclTbPXjcjmmj81cXouMwDJgPT9A98hOSxMyy
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E4%B8%AD%E5%8C%BB%E4%BD%93%E8%B4%A8%E7%9A%84%E8%80%81%E5%B9%B4%E4%BA%BA%E5%8A%A8%E8%84%89%E7%B2%A5%E6%A0%B7%E7%A1%AC%E5%8C%96%E6%80%A7%E5%BF%83%E8%A1%80%E7%AE%A1%E7%96%BE%E7%97%85%E9%A2%84%E6%B5%8B%E6%A8%A1%E5%9E%8B%E7%9A%84%E5%BC%80%E5%8F%91%E7%A0%94%E7%A9%B6&rft.jtitle=%E4%B8%AD%E5%9B%BD%E5%85%A8%E7%A7%91%E5%8C%BB%E5%AD%A6&rft.au=%E9%AB%98%E9%A2%96&rft.au=%E8%AE%B8%E6%AC%A3%E5%AE%9C&rft.au=%E5%88%98%E6%B4%8B&rft.au=%E6%9D%A8%E6%99%93%E7%90%A8&rft.date=2024-05-20&rft.pub=300381+%E5%A4%A9%E6%B4%A5%E5%B8%82%2C%E5%9B%BD%E5%AE%B6%E4%B8%AD%E5%8C%BB%E9%92%88%E7%81%B8%E4%B8%B4%E5%BA%8A%E5%8C%BB%E5%AD%A6%E7%A0%94%E7%A9%B6%E4%B8%AD%E5%BF%83&rft.issn=1007-9572&rft.volume=27&rft.issue=15&rft.spage=1878&rft.epage=1885&rft_id=info:doi/10.12114%2Fj.issn.1007-9572.2023.0406&rft.externalDocID=zgqkyx202415019
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgqkyx%2Fzgqkyx.jpg