基于主成分分析和人工神经网络的近红外光谱大豆产地识别
TS202.1; 为了准确、快速地识别大豆产地,通过近红外光谱技术(NIRS)结合主成分分析(PCA)和人工神经网络技术(ANN)研究不同国家大豆内含特征,建立进口大豆产地识别模型.采用箱型图校正法,剔除阿根廷、巴西、乌拉圭、美国等4个国家166组大豆样本中12组异常样本.采用多元散射校正(MSC)、标准正态变量(SNV)、Savitzky-Golay(SG)平滑滤波等方法进行光谱数据预处理,结果表明,采用SG(3)平滑结合MSC预处理效果最好.主成分分析表明,前10个主成分的累积贡献率达到99.966%.选取主成分分析得到前10个主成分为输入向量,4个产地作为目标向量,分别采用支持向量机(S...
        Saved in:
      
    
          | Published in | 食品工业科技 Vol. 42; no. 9; pp. 270 - 274 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | Chinese | 
| Published | 
            湛江海关技术中心,广东湛江 524022
    
        01.05.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1002-0306 | 
| DOI | 10.13386/j.issn1002-0306.2020060271 | 
Cover
| Abstract | TS202.1; 为了准确、快速地识别大豆产地,通过近红外光谱技术(NIRS)结合主成分分析(PCA)和人工神经网络技术(ANN)研究不同国家大豆内含特征,建立进口大豆产地识别模型.采用箱型图校正法,剔除阿根廷、巴西、乌拉圭、美国等4个国家166组大豆样本中12组异常样本.采用多元散射校正(MSC)、标准正态变量(SNV)、Savitzky-Golay(SG)平滑滤波等方法进行光谱数据预处理,结果表明,采用SG(3)平滑结合MSC预处理效果最好.主成分分析表明,前10个主成分的累积贡献率达到99.966%.选取主成分分析得到前10个主成分为输入向量,4个产地作为目标向量,分别采用支持向量机(SVM)、邻近算法(KNN)与人工神经网络法(ANN)建立识别模型.结果表明,采用BP-ANN建模效果最好,总体测试集准确率为95.65%,其中阿根廷准确率为100%,巴西准确率为100%,乌拉圭准确率为80%,美国准确率为100%,该模型能够实现对进口大豆生产国别的识别. | 
    
|---|---|
| AbstractList | TS202.1; 为了准确、快速地识别大豆产地,通过近红外光谱技术(NIRS)结合主成分分析(PCA)和人工神经网络技术(ANN)研究不同国家大豆内含特征,建立进口大豆产地识别模型.采用箱型图校正法,剔除阿根廷、巴西、乌拉圭、美国等4个国家166组大豆样本中12组异常样本.采用多元散射校正(MSC)、标准正态变量(SNV)、Savitzky-Golay(SG)平滑滤波等方法进行光谱数据预处理,结果表明,采用SG(3)平滑结合MSC预处理效果最好.主成分分析表明,前10个主成分的累积贡献率达到99.966%.选取主成分分析得到前10个主成分为输入向量,4个产地作为目标向量,分别采用支持向量机(SVM)、邻近算法(KNN)与人工神经网络法(ANN)建立识别模型.结果表明,采用BP-ANN建模效果最好,总体测试集准确率为95.65%,其中阿根廷准确率为100%,巴西准确率为100%,乌拉圭准确率为80%,美国准确率为100%,该模型能够实现对进口大豆生产国别的识别. | 
    
| Author | 龙阳 田琼 马新华 袁俊杰 洪武兴 卢韵宇  | 
    
| AuthorAffiliation | 湛江海关技术中心,广东湛江 524022 | 
    
| AuthorAffiliation_xml | – name: 湛江海关技术中心,广东湛江 524022 | 
    
| Author_FL | YUAN Junjie TIAN Qiong LU Yunyu MA Xinhua LONG Yang HONG Wuxing  | 
    
| Author_FL_xml | – sequence: 1 fullname: TIAN Qiong – sequence: 2 fullname: MA Xinhua – sequence: 3 fullname: YUAN Junjie – sequence: 4 fullname: LONG Yang – sequence: 5 fullname: HONG Wuxing – sequence: 6 fullname: LU Yunyu  | 
    
| Author_xml | – sequence: 1 fullname: 田琼 – sequence: 2 fullname: 马新华 – sequence: 3 fullname: 袁俊杰 – sequence: 4 fullname: 龙阳 – sequence: 5 fullname: 洪武兴 – sequence: 6 fullname: 卢韵宇  | 
    
| BookMark | eNo9j81Kw0AcxPdQwVr7FB48Jf53N7vZHqX4BUUvei6br9IoqbiIeNdSQWzrwYOUCtLSgwfbk5Igvky2yWMYUISBgYHfDLOGSlEn8hHawGBiSgXfCs22UhEGIAZQ4CYBAsCB2LiEyv_xKqoq1XYAMAbGGC2jQ_0Sp_FD-pksewPd6xZajgf68T6NY_0xzabjLOlnX8MsGWXPN_n3MItf9eRJ397l84WezPJFN41nejTP3wv2bR2tBPJM-dU_r6CT3Z3j-r7RONo7qG83DIWBCIMIiZl0Lct2hcc8S2IPOzUqXN9l3ANCasQT4INjUW5Txn1OAQfUcYFzj9iEVtDmb--VjAIZtZph5_IiKhab6rx1fRoW9zHUgAr6A4t5b7g | 
    
| ClassificationCodes | TS202.1 | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| DBID | 2B. 4A8 92I 93N PSX TCJ  | 
    
| DOI | 10.13386/j.issn1002-0306.2020060271 | 
    
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ)  | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| DocumentTitle_FL | Soybean Origin Identification Based by Near-Infrared Spectrum Based on Principal Component Analysis and Artificial Neural Network Model | 
    
| EndPage | 274 | 
    
| ExternalDocumentID | spgykj202109038 | 
    
| GrantInformation_xml | – fundername: 海关总署科研项目 funderid: (2019HK052)  | 
    
| GroupedDBID | -02 2B. 4A8 5XA 5XC 92H 92I 93N ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CDRFL CW9 GROUPED_DOAJ PSX TCJ TGT U1G U5L  | 
    
| ID | FETCH-LOGICAL-s1028-28a15ac447c8d5d4a1d1b938cec56d02292d80e0b4367356e6301f3bc066d2723 | 
    
| ISSN | 1002-0306 | 
    
| IngestDate | Thu May 29 04:10:01 EDT 2025 | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 9 | 
    
| Keywords | 主成分分析 人工神经网络 近红外光谱 大豆产地识别  | 
    
| Language | Chinese | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-s1028-28a15ac447c8d5d4a1d1b938cec56d02292d80e0b4367356e6301f3bc066d2723 | 
    
| PageCount | 5 | 
    
| ParticipantIDs | wanfang_journals_spgykj202109038 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-05-01 | 
    
| PublicationDateYYYYMMDD | 2021-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | 食品工业科技 | 
    
| PublicationTitle_FL | Science and Technology of Food Industry | 
    
| PublicationYear | 2021 | 
    
| Publisher | 湛江海关技术中心,广东湛江 524022 | 
    
| Publisher_xml | – name: 湛江海关技术中心,广东湛江 524022 | 
    
| SSID | ssib001105553 ssib051376492 ssj0050115  | 
    
| Score | 2.2879584 | 
    
| Snippet | TS202.1; 为了准确、快速地识别大豆产地,通过近红外光谱技术(NIRS)结合主成分分析(PCA)和人工神经网络技术(ANN)研究不同国家大豆内含特征,建立进口大豆产地识别模型.采用箱... | 
    
| SourceID | wanfang | 
    
| SourceType | Aggregation Database | 
    
| StartPage | 270 | 
    
| Title | 基于主成分分析和人工神经网络的近红外光谱大豆产地识别 | 
    
| URI | https://d.wanfangdata.com.cn/periodical/spgykj202109038 | 
    
| Volume | 42 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1002-0306 databaseCode: DOA dateStart: 20210101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0050115 providerName: Directory of Open Access Journals  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RAdGgriB7ET_ymoHOS1M3MJJk5JtksRbCnFnor-dhUWljFtgd71lJBtPXgQUoFaSniwfak7CL-mU13f4bvTdLdoVX8gDC8nXnzPjP7XiaZGULuwl0CYVnWrDjPcktkNgfIia0EpE6YncDYxNXID6fcyRnxYNaZHRn9ZHy1tLKcTKSrv1xX8j9ehTrwK66S_QfPDohCBcDgXyjBw1D-lY9p5FDVoIFPI4GljDQgaRDQyKVSUlVDHACkawAuVVHVpBiVYdUd6Tg08Kjv0EiXgAYAUJMNDdSpsqsaFSKggKmgEXBsHDX51GdIxxdUlUzhUhqnRgO7avI9XWNreTR3rHGQLKBBk98YyuwHZg5NI0V9joojPodc2BBbqw9SofyeFgnsAEIO3spoqYVm4qENgnDYAnThCrWBXI0C7Otg1iGKRO2Qo0CVgTLi1gHXpBKAdRUCClTk5sQKs4efMeqhgP0DQNQOA3OgVgBofUrbBXygg2YWomlKPf261hzk4DBUNKzwZ2WF8CTxew6-5zKmenFvXAuf6MxYJZgxJpUZeMrjV6ochpUnH50Ij5zr13ULmsOAwQRoj_vysPIwnGP7jy89mX-2uIAGwik9OUpOMQigNWP2QmfeeNDqMPNzbAhcQg12cnPwyUN_eFDxPE3uHAl0__fi6JV0rTxuzRtJ3_R5cq56Whv3y6F3gYysPrpIzhp7eF4iU8WHdrf9uvutc7i-UayvwXW4vVG8fdVtt4uvu73d7V7nTe_7Zq-z1Xv_vP9js9f-WOy8K1687O8fFDt7_YO1bnuv2Nrvf4G-ny-TmUY0HU5a1SEl1hLm5haTse3EqRBeKjMnE7Gd2YniMm2mjpuBRxXLZK1ZSwR3Pe64TRdCas6TFHL9jHmMXyFjrcet5lUyDuTyZs7TTDFb5FwmMmM8hp4MElmZu9fIeGWNuepPaGnumHeu_xnlBjkzvNtvkrHlpyvNW5BYLye3tUt_AkOyoZk | 
    
| linkProvider | Directory of Open Access Journals | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E4%B8%BB%E6%88%90%E5%88%86%E5%88%86%E6%9E%90%E5%92%8C%E4%BA%BA%E5%B7%A5%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%9A%84%E8%BF%91%E7%BA%A2%E5%A4%96%E5%85%89%E8%B0%B1%E5%A4%A7%E8%B1%86%E4%BA%A7%E5%9C%B0%E8%AF%86%E5%88%AB&rft.jtitle=%E9%A3%9F%E5%93%81%E5%B7%A5%E4%B8%9A%E7%A7%91%E6%8A%80&rft.au=%E7%94%B0%E7%90%BC&rft.au=%E9%A9%AC%E6%96%B0%E5%8D%8E&rft.au=%E8%A2%81%E4%BF%8A%E6%9D%B0&rft.au=%E9%BE%99%E9%98%B3&rft.date=2021-05-01&rft.pub=%E6%B9%9B%E6%B1%9F%E6%B5%B7%E5%85%B3%E6%8A%80%E6%9C%AF%E4%B8%AD%E5%BF%83%2C%E5%B9%BF%E4%B8%9C%E6%B9%9B%E6%B1%9F+524022&rft.issn=1002-0306&rft.volume=42&rft.issue=9&rft.spage=270&rft.epage=274&rft_id=info:doi/10.13386%2Fj.issn1002-0306.2020060271&rft.externalDocID=spgykj202109038 | 
    
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fspgykj%2Fspgykj.jpg |