广义无监督函数映射学习的三维形状密集对应方法
TP391.41; 提出了一种新颖的广义无监督函数映射学习的三维形状密集对应方法.首先,基于多层感知器(multilayer perceptron,MLP)和残差网络,直接学习深度点特征.其次,计算点云的近似测地线距离,并对其进行特征分解,建立特征嵌入空间,引入注意力机制,有效学习广义基函数表示.再次,结合点特征与广义基函数生成三维形状的深度特征表示.最后,建立无监督的函数映射网络框架,获取形状之间的密集对应表示.提出的三元正则优化机制,联合重构损失、特征损失和形状匹配的距离损失,在特征域和空间域上有效提升了学习性能及形状对应的精度.实验结果表明,广义基函数表示与无监督函数映射学习机制适用于任...
Saved in:
Published in | 浙江大学学报(理学版) Vol. 50; no. 6; pp. 736 - 744 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | Chinese |
Published |
辽宁师范大学 计算机与人工智能学院,辽宁 大连 116081
25.11.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1008-9497 |
DOI | 10.3785/j.issn.1008-9497.2023.06.008 |
Cover
Abstract | TP391.41; 提出了一种新颖的广义无监督函数映射学习的三维形状密集对应方法.首先,基于多层感知器(multilayer perceptron,MLP)和残差网络,直接学习深度点特征.其次,计算点云的近似测地线距离,并对其进行特征分解,建立特征嵌入空间,引入注意力机制,有效学习广义基函数表示.再次,结合点特征与广义基函数生成三维形状的深度特征表示.最后,建立无监督的函数映射网络框架,获取形状之间的密集对应表示.提出的三元正则优化机制,联合重构损失、特征损失和形状匹配的距离损失,在特征域和空间域上有效提升了学习性能及形状对应的精度.实验结果表明,广义基函数表示与无监督函数映射学习机制适用于任意三维形状,突破了现有方法只适用于连续二维流形的局限,在任意三维形状匹配中取得了更优的性能. |
---|---|
AbstractList | TP391.41; 提出了一种新颖的广义无监督函数映射学习的三维形状密集对应方法.首先,基于多层感知器(multilayer perceptron,MLP)和残差网络,直接学习深度点特征.其次,计算点云的近似测地线距离,并对其进行特征分解,建立特征嵌入空间,引入注意力机制,有效学习广义基函数表示.再次,结合点特征与广义基函数生成三维形状的深度特征表示.最后,建立无监督的函数映射网络框架,获取形状之间的密集对应表示.提出的三元正则优化机制,联合重构损失、特征损失和形状匹配的距离损失,在特征域和空间域上有效提升了学习性能及形状对应的精度.实验结果表明,广义基函数表示与无监督函数映射学习机制适用于任意三维形状,突破了现有方法只适用于连续二维流形的局限,在任意三维形状匹配中取得了更优的性能. |
Author | 谢昕洋 马会文 窦丰 杨万文 韩丽 石雪 林彬 |
AuthorAffiliation | 辽宁师范大学 计算机与人工智能学院,辽宁 大连 116081 |
AuthorAffiliation_xml | – name: 辽宁师范大学 计算机与人工智能学院,辽宁 大连 116081 |
Author_FL | DOU Feng YANG Wanwen MA Huiwen SHI Xue XIE Xinyang HAN Li LIN Bin |
Author_FL_xml | – sequence: 1 fullname: DOU Feng – sequence: 2 fullname: MA Huiwen – sequence: 3 fullname: XIE Xinyang – sequence: 4 fullname: YANG Wanwen – sequence: 5 fullname: SHI Xue – sequence: 6 fullname: HAN Li – sequence: 7 fullname: LIN Bin |
Author_xml | – sequence: 1 fullname: 窦丰 – sequence: 2 fullname: 马会文 – sequence: 3 fullname: 谢昕洋 – sequence: 4 fullname: 杨万文 – sequence: 5 fullname: 石雪 – sequence: 6 fullname: 韩丽 – sequence: 7 fullname: 林彬 |
BookMark | eNo9j8tKw0AYhWdRwVr7FoKrjP8_08llqcUbFNzouiRmRhpkCgaxuC6VuhOsikUICu6kBUWMUnyZTIJvYURxdeBbnHO-BVLRXS0JWUKg3HHFSkQ7cawpAriW1_AcyoBxCjYtQYVU__k8qcdxJwBAEMg8t0rWTPqZpcP8OinGF8Xdgzmb5aNpfpOYad88PWZpUtz2s7dh8fFiZvfF-auZDL7GAzNJzftlfpXmz6NFMqf8w1jW_7JG9jbWd5tbVmtnc7u52rJiBOZaCEHoOxIdR4YMuRABKiyvMJvxBpNMKJcDqH1PoUAlA-SISklpi0Ao7jFeI8u_vSe-Vr4-aEfd4yNdLrZPo7DXC36cwS5V-Tcxl2g5 |
ClassificationCodes | TP391.41 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3785/j.issn.1008-9497.2023.06.008 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitle_FL | Unsupervised generalized functional map learning for arbitrary 3D shape dense correspondence |
EndPage | 744 |
ExternalDocumentID | zjdxxb202306008 |
GrantInformation_xml | – fundername: 辽宁省科技厅应用基础研究计划项目(2023JH2/101300190) |
GroupedDBID | 2B. 4A8 92I 93N ALMA_UNASSIGNED_HOLDINGS GROUPED_DOAJ PSX TCJ |
ID | FETCH-LOGICAL-s1028-10bda7e177ed21355b1f1b00262342e25f8300fc9f151feb1311ffee65b5f3923 |
ISSN | 1008-9497 |
IngestDate | Thu May 29 04:06:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | shape correspondence functional maps deep learning 无监督学习 深度学习 函数映射 形状对应 unsupervised learning |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1028-10bda7e177ed21355b1f1b00262342e25f8300fc9f151feb1311ffee65b5f3923 |
PageCount | 9 |
ParticipantIDs | wanfang_journals_zjdxxb202306008 |
PublicationCentury | 2000 |
PublicationDate | 2023-11-25 |
PublicationDateYYYYMMDD | 2023-11-25 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-25 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | 浙江大学学报(理学版) |
PublicationTitle_FL | Journal of Zhejiang University(Science Edition) |
PublicationYear | 2023 |
Publisher | 辽宁师范大学 计算机与人工智能学院,辽宁 大连 116081 |
Publisher_xml | – name: 辽宁师范大学 计算机与人工智能学院,辽宁 大连 116081 |
SSID | ssib001051298 ssib051373732 ssib002258177 ssib004369313 ssib008679801 ssib002476865 ssib023167501 ssib059160192 ssib000948450 ssib002040240 ssib001104615 ssib000969734 ssib008143637 ssib006704891 ssj0002507526 |
Score | 2.37582 |
Snippet | TP391.41; 提出了一种新颖的广义无监督函数映射学习的三维形状密集对应方法.首先,基于多层感知器(multilayer perceptron,MLP)和残差网络,直接学习深度点特征.其次,计算点... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 736 |
Title | 广义无监督函数映射学习的三维形状密集对应方法 |
URI | https://d.wanfangdata.com.cn/periodical/zjdxxb202306008 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1008-9497 databaseCode: DOA dateStart: 20220101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0002507526 providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text issn: 1008-9497 databaseCode: ADMLS dateStart: 20190301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text omitProxy: false ssIdentifier: ssib001051298 providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources issn: 1008-9497 databaseCode: M~E dateStart: 19990101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://road.issn.org omitProxy: true ssIdentifier: ssib059160192 providerName: ISSN International Centre |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBcAgbES-iqPgMOaRPYeO8-nWc2cwSxHgxgdzCzs6M4mEFk0DIOUTiTTAqBiEoeJMEFHGV4M9kdvEvrKp5bJuIL3a3qa2qqeqqnpmu6unusawp4SUije2kmeF8HR_Hb5QW3Wba8f0EMoo4obk583fE3KJ_a4kvjTVOGbOW1lbjme7GL9eV_E-rAg7aFVfJ_kPL1kIBATC0L5TQwlD-VRuziLNQs7DNIh8BpVkkmJYssFkkmQ6ZdgiYZYGHzJD5h7PEAwfaBChipr_KRyAAZlEKLOUERAKMIhUgJGQhMYO0wEWMClgo6PA2UwBo1K4qDIhC5oBpn5QKwkDpseLll1V8TEjOdEF1mG6TBJ8F0qhbDQjUG3AWgYoWU4pqa1d6Cx6JdUZSwVMPfCAlCCpbFThgRAHL4dsiSgvtLyo96rRZhAeQ7eRD8CdWGALzcMQiyPGq8pz8WUo51OJ6uOawWJZNFweJjqidwIYIQn3ynSIboAQbvJNOmUYacAfU4ADoQl0LvV5WICIgIAxIlOQ5gc5GjEK5pdbCcxpJYKLbOlmnaaMKCs9AHU07jrCLN-OU3RxOetF-MTO66geLDYDL693s1IrFIVV8JIv9Oo93vZ5UnLpeVDBTK5hBP9IOubYahRz1RNCNB8n6euxSIkxr9sddKYTbsMaD2fnbd41EwFe--fxdCy3NjQ1tDFyN5784dcEIdF3oq1zfXPHNlSPNgQpIu83n_Z7QnhHoCgk9nbGrlII0QxiBPW5bqeya7uL-Enz0nzuehE-dSHBIyjC3qkeDIRGRnN4NWXvutDVVuvXm75xKiw17Wad3z4iLF85ZZ8uEdjIo7k7nrbGN-xesMO9_O-pvD17sDXefDl-_zR8fDnYOBi_38oPN_P27o_7e8NXm0eft4deP-eGb4ZNP-f7W992tfL-ff3k2eN4ffNi5aC22o4XWXLN8W0tzBZMUiOfipCNT8GqauA6kMbGTOTTG43q-m7o8U55tZ12dQZKRQYjoOU6WpangMc8gS_MuWY3ew1562ZpUKrFj3-7GEudtSK_DeRbDD10EQtMr1mRp83J5N15ZPnYmXf0zyzXrzOgiv241Vh-tpTcgw1iNJ8rTb4JG6H4AIaHU2g |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%B9%BF%E4%B9%89%E6%97%A0%E7%9B%91%E7%9D%A3%E5%87%BD%E6%95%B0%E6%98%A0%E5%B0%84%E5%AD%A6%E4%B9%A0%E7%9A%84%E4%B8%89%E7%BB%B4%E5%BD%A2%E7%8A%B6%E5%AF%86%E9%9B%86%E5%AF%B9%E5%BA%94%E6%96%B9%E6%B3%95&rft.jtitle=%E6%B5%99%E6%B1%9F%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E7%90%86%E5%AD%A6%E7%89%88%EF%BC%89&rft.au=%E7%AA%A6%E4%B8%B0&rft.au=%E9%A9%AC%E4%BC%9A%E6%96%87&rft.au=%E8%B0%A2%E6%98%95%E6%B4%8B&rft.au=%E6%9D%A8%E4%B8%87%E6%96%87&rft.date=2023-11-25&rft.pub=%E8%BE%BD%E5%AE%81%E5%B8%88%E8%8C%83%E5%A4%A7%E5%AD%A6+%E8%AE%A1%E7%AE%97%E6%9C%BA%E4%B8%8E%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E5%AD%A6%E9%99%A2%2C%E8%BE%BD%E5%AE%81+%E5%A4%A7%E8%BF%9E+116081&rft.issn=1008-9497&rft.volume=50&rft.issue=6&rft.spage=736&rft.epage=744&rft_id=info:doi/10.3785%2Fj.issn.1008-9497.2023.06.008&rft.externalDocID=zjdxxb202306008 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzjdxxb%2Fzjdxxb.jpg |