基于阵列式ESP32-CAM的番茄根系表型原位测量方法

S24%TP391.4; 为原位采集番茄根系图像,解决番茄根系表型原位测量问题,该研究提出一种基于阵列式ESP32-CAM的番茄根系表型原位测量方法.通过4×4阵列式ESP32-CAM结合OV2640镜头模组实现土壤中根系图像原位自动化无线采集,并采用张正友标定法实现相机标定和畸变校正,利用尺度不变特征转换和最邻近分类的特征检测匹配算法实现图像配准,基于离线标定方法获取相机间变换矩阵实现根系图像拼接;通过引入多头自注意力机制改进U型卷积神经网络(U-architecture convolutional networks,U-Net)模型对根系图像进行语义分割,采用形态学处理和骨架提取测量根系长...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 39; no. 18; pp. 172 - 182
Main Authors 孙国祥, 蔡嘉奇, 周新竹, 徐乃旻
Format Journal Article
LanguageChinese
Published 南京农业大学工学院,南京 210031 01.09.2023
江苏省现代设施农业技术与装备工程实验室,南京 210031%南京农业大学工学院,南京 210031
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.202305118

Cover

Abstract S24%TP391.4; 为原位采集番茄根系图像,解决番茄根系表型原位测量问题,该研究提出一种基于阵列式ESP32-CAM的番茄根系表型原位测量方法.通过4×4阵列式ESP32-CAM结合OV2640镜头模组实现土壤中根系图像原位自动化无线采集,并采用张正友标定法实现相机标定和畸变校正,利用尺度不变特征转换和最邻近分类的特征检测匹配算法实现图像配准,基于离线标定方法获取相机间变换矩阵实现根系图像拼接;通过引入多头自注意力机制改进U型卷积神经网络(U-architecture convolutional networks,U-Net)模型对根系图像进行语义分割,采用形态学处理和骨架提取测量根系长度、面积、平均直径、根深和根宽.研究结果表明:相机阵列图像的拼接迭代均方根误差小于1.11mm,全局拼接图像的拼接融合质量评分大于0.85;改进后的U-Net模型应用于番茄根系分割的精度、召回率、交并比和Fl值分别为86.06%、78.98%、71.41%和82.37%,相比于原始U-Net模型分别提高了18.97、13.21、21.67和16.30个百分点;与人工测量值相比,根系的面积、长度、平均直径、根深和根宽的平均绝对百分比误差分别为7.78%、5.66%、8.48%、2.40%和2.23%,决定系数R2分别为0.91、0.93、0.84、0.98和0.99.该方法适用于番茄根系表型原位测量,并可推广至其他植物或果树根系表型原位测量.
AbstractList S24%TP391.4; 为原位采集番茄根系图像,解决番茄根系表型原位测量问题,该研究提出一种基于阵列式ESP32-CAM的番茄根系表型原位测量方法.通过4×4阵列式ESP32-CAM结合OV2640镜头模组实现土壤中根系图像原位自动化无线采集,并采用张正友标定法实现相机标定和畸变校正,利用尺度不变特征转换和最邻近分类的特征检测匹配算法实现图像配准,基于离线标定方法获取相机间变换矩阵实现根系图像拼接;通过引入多头自注意力机制改进U型卷积神经网络(U-architecture convolutional networks,U-Net)模型对根系图像进行语义分割,采用形态学处理和骨架提取测量根系长度、面积、平均直径、根深和根宽.研究结果表明:相机阵列图像的拼接迭代均方根误差小于1.11mm,全局拼接图像的拼接融合质量评分大于0.85;改进后的U-Net模型应用于番茄根系分割的精度、召回率、交并比和Fl值分别为86.06%、78.98%、71.41%和82.37%,相比于原始U-Net模型分别提高了18.97、13.21、21.67和16.30个百分点;与人工测量值相比,根系的面积、长度、平均直径、根深和根宽的平均绝对百分比误差分别为7.78%、5.66%、8.48%、2.40%和2.23%,决定系数R2分别为0.91、0.93、0.84、0.98和0.99.该方法适用于番茄根系表型原位测量,并可推广至其他植物或果树根系表型原位测量.
Abstract_FL The root is one of the most crucial parts of the plant to affect the overall healthy plant.The leaf can be the corresponding indicator at various stages of growth,even in the ultimate crop.However,some significant challenges still remain in the in-situ detection of soil roots.In this study,an in-situ measurement approach was presented for the tomato root phenotypes using the array ESP32-camera(CAM).Tomato root images were also captured for the in-situ measurement of root phenotypic parameters.A 4×4 array ESP32-CAM combined with 4×4 OV2640 lens module was used for the in-situ automatic wireless acquisition of soil root images.The camera was calibrated and corrected for the aberrations using the Zhang Zhengyou calibration.The image alignment was achieved using scale-invariant feature transform and K-nearest neighbor feature detection matching.The image stitching was obtained for the inter-camera transformation matrix using offline calibration.The semantic segmentation of root images was improved to introduce the efficient multi-head self-attention mechanism.The U-Net model was improved to mix the dice loss and cross-entropy loss.In-situ image acquisition experiments of tomato root systems were also conducted to obtain the images of periodic root changes.The root system was measured manually,i.e.,the root length was measured in sections by a soft ruler,the root diameter was obtained by averaging the points,the root area was approximated by the product of length and average diameter,and the root depth and width were obtained by measuring the vertical longitudinal depth and horizontal longitudinal width.Morphological processing and skeleton extraction were used to measure the root length,root area,and root mean diameter using pixel point scanning.By contrast,the root phenotypic parameters(such as the root depth and root width)were measured using the root convexity package.The results showed that the root mean square error(RMSE)of standard shape image stitching iterations of 4x4 camera array was less than 1.11 mm,and the subjective quality scores of the structural similarity index and difference of edge map of global stitched images were above 0.85,the peak signal-to-noise ratio(PSNR)was greater than 32 dB.The improved U-Net model shared the greater improvement in the search for root system completeness and accuracy.Specifically,the precision,recall,intersection over the union,and Fl value of the improved U-Net model on the tomato root segmentation were 86.06%,78.98%,71.41%,and 82.37%,respectively,which were 18.97 percentage points,13.21 percentage points,21.67 percentage points,and 16.30 percentage points higher than those of the original U-Net model training,respectively.Furthermore,the mean absolute percentage errors of calculated area,length,mean diameter,root depth,and root width of root systems were 7.78%,5.66%,8.48%,2.40%,and 2.23%,respectively,and the coefficients of determination were 0.91,0.93,0.84,0.98,and 0.99,respectively,compared with the manual measurements.In-situ measurement of the root phenotype of tomato plants can also be extended to the other plants or fruit trees.
Author 孙国祥
周新竹
徐乃旻
蔡嘉奇
AuthorAffiliation 南京农业大学工学院,南京 210031;江苏省现代设施农业技术与装备工程实验室,南京 210031%南京农业大学工学院,南京 210031
AuthorAffiliation_xml – name: 南京农业大学工学院,南京 210031;江苏省现代设施农业技术与装备工程实验室,南京 210031%南京农业大学工学院,南京 210031
Author_FL ZHOU Xinzhu
SUN Guoxiang
XU Naimin
CAI Jiaqi
Author_FL_xml – sequence: 1
  fullname: SUN Guoxiang
– sequence: 2
  fullname: CAI Jiaqi
– sequence: 3
  fullname: ZHOU Xinzhu
– sequence: 4
  fullname: XU Naimin
Author_xml – sequence: 1
  fullname: 孙国祥
– sequence: 2
  fullname: 蔡嘉奇
– sequence: 3
  fullname: 周新竹
– sequence: 4
  fullname: 徐乃旻
BookMark eNo9j09LAkEYxudgkJmfokOn3d53Znd25hSy2B8wCqqz7Ky7osQIDVHdhQJTT1Z0yLpFV_Gg1bdxd_VbZBSdHvgdnt_zrJGcbumIkA0EG1F67lbTbhijbQSgFhcobQqUgYsociT_T1dJ0ZiGWnLmATiYJ9vJcDqb9haP4-T2Ifnsl4-PGLX80kH21M4G7_O7dvoyyUYf89e35LmT9Iazr2467ixu-un9JB0N1slKHJyZqPiXBXK6Uz7x96zK4e6-X6pYBoF6VkRj5kaxrHnCkyGnFOJIgnKlG0ZKgMMDzhGEI7lER4Uh8lDVXIoyYIEUy7kFsvnbexnoOND1arN1ca6Xxqq-rodX6ucuCkCPfQNtZmDH
ClassificationCodes S24%TP391.4
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.202305118
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitle_FL In-situ measuring tomato root phenotype using array ESP32-CAM
EndPage 182
ExternalDocumentID nygcxb202318017
GrantInformation_xml – fundername: 江苏省农业科技自主创新资金项目(CX
  funderid: (22)3097)
GroupedDBID -04
2B.
4A8
5XA
5XE
92G
92I
93N
ABDBF
ABJNI
ACGFO
ACGFS
ACUHS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CW9
EOJEC
FIJ
IPNFZ
OBODZ
PSX
RIG
TCJ
TGD
TUS
U1G
U5N
ID FETCH-LOGICAL-s1027-e2f35ef9d7879c6220fe90b595ceb8046a66108496914bcc16cbd5219a3a98513
ISSN 1002-6819
IngestDate Thu May 29 04:08:36 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 18
Keywords ESP32-CAM
image processing
根系表型
原位
U-Net
roots
tomato
in-situ
根系
image stitching
番茄
图像处理
root phenotype
图像拼接
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1027-e2f35ef9d7879c6220fe90b595ceb8046a66108496914bcc16cbd5219a3a98513
PageCount 11
ParticipantIDs wanfang_journals_nygcxb202318017
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationTitle 农业工程学报
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2023
Publisher 南京农业大学工学院,南京 210031
江苏省现代设施农业技术与装备工程实验室,南京 210031%南京农业大学工学院,南京 210031
Publisher_xml – name: 南京农业大学工学院,南京 210031
– name: 江苏省现代设施农业技术与装备工程实验室,南京 210031%南京农业大学工学院,南京 210031
SSID ssib051370041
ssj0041925
ssib001101065
ssib023167668
Score 2.4400513
Snippet S24%TP391.4; 为原位采集番茄根系图像,解决番茄根系表型原位测量问题,该研究提出一种基于阵列式ESP32-CAM的番茄根系表型原位测量方法.通过4×4阵列式ESP32-CAM结合OV2640镜...
SourceID wanfang
SourceType Aggregation Database
StartPage 172
Title 基于阵列式ESP32-CAM的番茄根系表型原位测量方法
URI https://d.wanfangdata.com.cn/periodical/nygcxb202318017
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCO Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBsMkDRA_iE98EtE8ycV79Okn37ixBiAgmkFuYmZ1JTiskG9CcAwrR5BQVD0Zv4jXkkKh_k90kf2FVz-zsYCI-LkPTVV2Pru6pqqZmmpB7Xsy5SFXbCVmmnDCXmSPbWex4IhVuljKIaPG8Y_oxn5oNH82xuZHRbq1qaaWbTKarp35X8j9WhT6wK34l-w-WrYhCB7TBvvAEC8Pzr2xMI0ZVixpNoxCfMqKRokpSwxAkJVUCG6ZBZSt6-iTwnYaeppGgCpBD22BUw3BJZcP2cKpdahSCTECNQZD2qJaWV0SlsZQj5ItMm1Q2cRRwRJCiUgAv7FHc0uFIp7jhchAEWwqA0LAUJAqDQgqqGfIFXgUX3aSaIwWpATRYGiVEKSuRQREiO7SOAkRDlBtRgJzFBZSh17WQQq9CVNdSAXKqjmJAUdeKCZoFFhcmxtTPSvygKgYrVrdVr2mn3lpFN05XWIOEoqZnNQVVj0IttQ_b4CTN-5BFu6VrK5wKeh0uS9dQep3iF06D3SVrPsQr7jIqwxGvuJvppKdTgllXhywmKxaTqLaLaePQwVdll50XC-nzBDE8CEzEKBn3wRe6Y2Rcm6ZpDcNoD08Kqve8j39L4MO0lHkBXopQlVJhIQGzVQWlEGfI3YGID34voP1MrpPHnYVaRDdzgZwvU7EJXeyri2RkdfESOacXlsrf0WSXycPe9v7B_sbx-93eq3e975vVHjr8sHa49fXo9Vr_097hzrejz196H9d7G9sHP970d9ePX2723-71d7aukNlWNNOYcsorR5xliLSFk_l5wLJctcGPqZT7vptnyk2YYmmWSDfk8GrzXBkqrrwwSVOPp0kbImAVB7GC5CW4SsY6zzrZNTIhIBNksUqTWHhhikW7IstlkOSQInmZSq-TiVL9-fKVsjz_i4Fu_BnlJjk7XOi3yFh3aSW7DWFyN7lTWvUn76aMLQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E9%98%B5%E5%88%97%E5%BC%8FESP32-CAM%E7%9A%84%E7%95%AA%E8%8C%84%E6%A0%B9%E7%B3%BB%E8%A1%A8%E5%9E%8B%E5%8E%9F%E4%BD%8D%E6%B5%8B%E9%87%8F%E6%96%B9%E6%B3%95&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%AD%99%E5%9B%BD%E7%A5%A5&rft.au=%E8%94%A1%E5%98%89%E5%A5%87&rft.au=%E5%91%A8%E6%96%B0%E7%AB%B9&rft.au=%E5%BE%90%E4%B9%83%E6%97%BB&rft.date=2023-09-01&rft.pub=%E5%8D%97%E4%BA%AC%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%B7%A5%E5%AD%A6%E9%99%A2%2C%E5%8D%97%E4%BA%AC+210031&rft.issn=1002-6819&rft.volume=39&rft.issue=18&rft.spage=172&rft.epage=182&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.202305118&rft.externalDocID=nygcxb202318017
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg