顶板瓦斯抽采巷布置位置智能预测方法
TD712; 顶板瓦斯抽采巷因具有大流量和连续抽采的优点,被广泛用于高瓦斯或突出矿井回采工作面瓦斯治理.如何确定合理的顶板巷布置位置,以高效抽采采空区卸压瓦斯,是保障工作面瓦斯治理效果的关键.为此,在深入分析顶板瓦斯抽采巷布置原则及其布置位置影响因素的基础上,提出了一种基于GA-BP神经网络模型的顶板瓦斯抽采巷布置位置智能预测方法;采用灰色关联分析法确定了GA-BP神经网络模型的预测指标,并设计开发了顶板瓦斯抽采巷布置位置智能预测系统.研究结果表明:①工作面的采厚、埋深、覆岩结构、煤层倾角、倾向长度等 5个物理指标是顶板瓦斯抽采巷布置位置的主控因素,且其权重值排序由大到小依次为采厚、埋深、覆岩...
Saved in:
| Published in | 煤炭科学技术 Vol. 52; no. 4; pp. 203 - 213 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | Chinese |
| Published |
中国矿业大学煤炭精细勘探与智能开发全国重点实验室,江苏徐州 221116%中国矿业大学煤炭精细勘探与智能开发全国重点实验室,江苏徐州 221116
2024
中国矿业大学矿业工程学院,江苏徐州 221116%中国矿业大学矿业工程学院,江苏徐州 221116 |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0253-2336 |
| DOI | 10.12438/cst.2024-0065 |
Cover
| Abstract | TD712; 顶板瓦斯抽采巷因具有大流量和连续抽采的优点,被广泛用于高瓦斯或突出矿井回采工作面瓦斯治理.如何确定合理的顶板巷布置位置,以高效抽采采空区卸压瓦斯,是保障工作面瓦斯治理效果的关键.为此,在深入分析顶板瓦斯抽采巷布置原则及其布置位置影响因素的基础上,提出了一种基于GA-BP神经网络模型的顶板瓦斯抽采巷布置位置智能预测方法;采用灰色关联分析法确定了GA-BP神经网络模型的预测指标,并设计开发了顶板瓦斯抽采巷布置位置智能预测系统.研究结果表明:①工作面的采厚、埋深、覆岩结构、煤层倾角、倾向长度等 5个物理指标是顶板瓦斯抽采巷布置位置的主控因素,且其权重值排序由大到小依次为采厚、埋深、覆岩结构、煤层倾角、倾向长度.②随着遗传代数的增加,GA-BP神经网络适应度不断减小,且当遗传代数为 60时其适应度变化基本稳定,表明GA-BP神经网络初始权重和偏置效果较好.③在当前训练样本数据集的前提下,基于GA-BP神经网络模型的顶板瓦斯抽采巷布置位置的预测结果与实际工况值的相对误差仅为0.43%~11.27%,在可接受的范围内.该研究可为顶板瓦斯抽采巷精准设计提供一定的参考. |
|---|---|
| AbstractList | TD712; 顶板瓦斯抽采巷因具有大流量和连续抽采的优点,被广泛用于高瓦斯或突出矿井回采工作面瓦斯治理.如何确定合理的顶板巷布置位置,以高效抽采采空区卸压瓦斯,是保障工作面瓦斯治理效果的关键.为此,在深入分析顶板瓦斯抽采巷布置原则及其布置位置影响因素的基础上,提出了一种基于GA-BP神经网络模型的顶板瓦斯抽采巷布置位置智能预测方法;采用灰色关联分析法确定了GA-BP神经网络模型的预测指标,并设计开发了顶板瓦斯抽采巷布置位置智能预测系统.研究结果表明:①工作面的采厚、埋深、覆岩结构、煤层倾角、倾向长度等 5个物理指标是顶板瓦斯抽采巷布置位置的主控因素,且其权重值排序由大到小依次为采厚、埋深、覆岩结构、煤层倾角、倾向长度.②随着遗传代数的增加,GA-BP神经网络适应度不断减小,且当遗传代数为 60时其适应度变化基本稳定,表明GA-BP神经网络初始权重和偏置效果较好.③在当前训练样本数据集的前提下,基于GA-BP神经网络模型的顶板瓦斯抽采巷布置位置的预测结果与实际工况值的相对误差仅为0.43%~11.27%,在可接受的范围内.该研究可为顶板瓦斯抽采巷精准设计提供一定的参考. |
| Abstract_FL | The roof gas drainage roadway,with its advantages of large flow and continuous extraction,is widely used in the gas control of high gas or outburst mine working faces.How to determine the reasonable arrangement position of the roof roadway to efficiently extract the pressure-relief gas in the goaf is key to ensuring the effect of gas control on the working face.Therefore,through a deep analysis of the arrangement principles of the roof gas drainage roadway and the main controlling factors of its arrangement position,an intelligent predic-tion method for the arrangement position of the roof gas drainage roadway based on the GA-BP neural network model is proposed.The prediction indicators of the GA-BP neural network model were determined using the grey correlation analysis method,and an intelligent prediction system for the arrangement position of the roof gas drainage roadway was designed and developed.The research results show:①The mining thickness,burial depth,overlying rock structure,coal seam dip angle,and dip length of the working face are the main con-trolling factors for the arrangement position of the roof gas drainage roadway,and their weight values are ranked as:mining thickness>burial depth>overlying rock structure>coal seam dip angle>dip length;②With the increase of genetic generations,the fitness of the GA-BP neural network continuously decreases,and when the genetic generation is 60,its fitness change is basically stable,indicating that the initial weight and bias of the GA-BP neural network are good;③Under the premise of the current training sample data set,the relat-ive error of the prediction result of the arrangement position of the roof gas drainage roadway based on the GA-BP neural network model and the actual working condition value is only 0.43%~11.27%,which is within an acceptable range.This research can provide a certain reference for the precise design of the arrangement of the roof gas drainage roadway. |
| Author | 朱家锌 许家林 郭世斌 胡国忠 杨南 秦伟 |
| AuthorAffiliation | 中国矿业大学矿业工程学院,江苏徐州 221116%中国矿业大学矿业工程学院,江苏徐州 221116;中国矿业大学煤炭精细勘探与智能开发全国重点实验室,江苏徐州 221116%中国矿业大学煤炭精细勘探与智能开发全国重点实验室,江苏徐州 221116 |
| AuthorAffiliation_xml | – name: 中国矿业大学矿业工程学院,江苏徐州 221116%中国矿业大学矿业工程学院,江苏徐州 221116;中国矿业大学煤炭精细勘探与智能开发全国重点实验室,江苏徐州 221116%中国矿业大学煤炭精细勘探与智能开发全国重点实验室,江苏徐州 221116 |
| Author_FL | GUO Shibin YANG Nan QIN Wei ZHU Jiaxin HU Guozhong XU Jialin |
| Author_FL_xml | – sequence: 1 fullname: GUO Shibin – sequence: 2 fullname: HU Guozhong – sequence: 3 fullname: ZHU Jiaxin – sequence: 4 fullname: XU Jialin – sequence: 5 fullname: QIN Wei – sequence: 6 fullname: YANG Nan |
| Author_xml | – sequence: 1 fullname: 郭世斌 – sequence: 2 fullname: 胡国忠 – sequence: 3 fullname: 朱家锌 – sequence: 4 fullname: 许家林 – sequence: 5 fullname: 秦伟 – sequence: 6 fullname: 杨南 |
| BookMark | eNotj71KA0EUhaeIYIxpfQWrjXfunZndlBL8g4CN1mF2d0aMugEnon2EgGIlCVhYaGGphWhUWHwZM3HfwhVtzum-850FVsl6mWFsiUODo6BoJXH9BgKKAEDJCqsCSgqQSM2zunP7MUhOoeCgqoyKu1d_-zm7fvDjJ3-RF8PhdDKZvg1m-eNXflWmv_n4HuTF_bl_ufTjd_88WmRzVh86U__vGttdX9tpbQbt7Y2t1mo7cBwwDFKtLVphrBZxgjKMjExRWpuKptDGIkmt0CgeK4i4SJMw5tQs9VOyXKsooRpb_uOe6szqbK_T7Z0cZ-Vi56h_cNZ1vxdBAA_pB6FkW0Q |
| ClassificationCodes | TD712 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.12438/cst.2024-0065 |
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| DocumentTitle_FL | Intelligent prediction method for roof gas drainage roadway layout |
| EndPage | 213 |
| ExternalDocumentID | mtkxjs202404017 |
| GrantInformation_xml | – fundername: (国家自然科学基金); 江苏高校青蓝工程资助项目; (江苏省六大人才高峰高层次人才资助项目) funderid: (国家自然科学基金); 江苏高校青蓝工程资助项目; (江苏省六大人才高峰高层次人才资助项目) |
| GroupedDBID | -02 2B. 4A8 5XA 5XC 92H 92I 93N ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CDRFL CW9 GROUPED_DOAJ PSX TCJ TGT U1G U5L |
| ID | FETCH-LOGICAL-s1027-daaf2f4efa4bc2578e5d25ffd494aef235a62e61b60814dc7b139438d3f1a68c3 |
| ISSN | 0253-2336 |
| IngestDate | Thu May 29 04:07:34 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Keywords | genetic algorithm 顶板瓦斯抽采巷 遗传算法 intelligent prediction gas drainage 智能预测 巷道布置 roof gas drainage roadway 瓦斯抽采 precision arrangement |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-s1027-daaf2f4efa4bc2578e5d25ffd494aef235a62e61b60814dc7b139438d3f1a68c3 |
| PageCount | 11 |
| ParticipantIDs | wanfang_journals_mtkxjs202404017 |
| PublicationCentury | 2000 |
| PublicationDate | 2024 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | 煤炭科学技术 |
| PublicationTitle_FL | Coal Science and Technology |
| PublicationYear | 2024 |
| Publisher | 中国矿业大学煤炭精细勘探与智能开发全国重点实验室,江苏徐州 221116%中国矿业大学煤炭精细勘探与智能开发全国重点实验室,江苏徐州 221116 中国矿业大学矿业工程学院,江苏徐州 221116%中国矿业大学矿业工程学院,江苏徐州 221116 |
| Publisher_xml | – name: 中国矿业大学煤炭精细勘探与智能开发全国重点实验室,江苏徐州 221116%中国矿业大学煤炭精细勘探与智能开发全国重点实验室,江苏徐州 221116 – name: 中国矿业大学矿业工程学院,江苏徐州 221116%中国矿业大学矿业工程学院,江苏徐州 221116 |
| SSID | ssib051374106 ssj0037581 ssib001105251 ssib012291398 ssib036204842 |
| Score | 2.3700683 |
| Snippet | TD712; 顶板瓦斯抽采巷因具有大流量和连续抽采的优点,被广泛用于高瓦斯或突出矿井回采工作面瓦斯治理.如何确定合理的顶板巷布置位置,以高效抽采采空区卸压瓦斯,是保障工作... |
| SourceID | wanfang |
| SourceType | Aggregation Database |
| StartPage | 203 |
| Title | 顶板瓦斯抽采巷布置位置智能预测方法 |
| URI | https://d.wanfangdata.com.cn/periodical/mtkxjs202404017 |
| Volume | 52 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 0253-2336 databaseCode: DOA dateStart: 20210101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0037581 providerName: Directory of Open Access Journals |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw7V1Li9RAEG7W8aIH8Ylv5mCfJJp0d5LuY_dMhkXQ0y7sbUkmiaI4gjMLstcVFhRP4oIHD3rwqAfRVWHwz7hZ5-ZPsKo7MxPXBR9nIYROp7r6q6qQqmr6QcilPI_jMk6ll-V56glwAJ7CHYdEVsRKsdyXBa4dvn4jWlwW11bClYXW98aspbVRdqW_vu-6kn-xKtSBXXGV7F9YdsYUKqAM9oU7WBjuf2RjmiiqA2oimkRUdanp0SSmilPtaiKqe1iQmpouEkPmD1cSUhPjhQVJJcdWQKATmggsyG6jBvgoajRNLKXjoxmVAl-ZkEpT92WUreHUnWc5DXmRlQypFrbAqLbMNeAMEAA8OrQAUvqWVQdgTz8Ei5rbRgLBqqlksjMnsci0ZaeMhRiiLrQ_J7FsjesxsRpTVIk9XPCNbJBAo4S6ib3TkRE2HxOtEeluo1-QqmfN4MBqy0ygtHNR91OHYdQktmCojJAY1Kqk1UuC6nYM5b72AGE7VnfQqlerFbuQDWDO9t26UzSVlRLkQ3OC6jt1DQBjHWvIAGXBXgyyxV6A3q-_HpVcZpDV45hM-F8RqIiGS2Uh9xh3W-5M_X_IGv850XTmPm_Ehcytmf4l5GDCnjDQH-LMbCY8DOrnwdVsyuvd0Z0Ht4dIAW4ziA-QgwxHEBuDQDaBCfBcyZnHDRjDbXtnHpLj6RFSzBKSMOCQEeA8CRd7csj-7RmhUznrbWoR49WfENo1ioMyHdxshNNLR8mROg9ua_dTO0YW1m8dJ4cbu6OeIHzy8kP14svu09fV1tvq0Xiyubmzvb3zcWN3_Obr-Ancq-efv22MJ68eVu8fV1ufqnfPTpLlXrLUWfTqM168IaQ2sZenaclKUZSpyPoYPhRhzsKyzIUSaVEyHqYRK6IgiyB3EXk_zkAfIE3OyyCNZJ-fIq3BvUFxmrTjNIzi3M98mYGKSqmKQPSZAmcT88IXxRnSrkVerf_hw9U9Vjn7e5Jz5JBTIo7Cniet0f214gLkJaPsojXlD95U2AY |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%A1%B6%E6%9D%BF%E7%93%A6%E6%96%AF%E6%8A%BD%E9%87%87%E5%B7%B7%E5%B8%83%E7%BD%AE%E4%BD%8D%E7%BD%AE%E6%99%BA%E8%83%BD%E9%A2%84%E6%B5%8B%E6%96%B9%E6%B3%95&rft.jtitle=%E7%85%A4%E7%82%AD%E7%A7%91%E5%AD%A6%E6%8A%80%E6%9C%AF&rft.au=%E9%83%AD%E4%B8%96%E6%96%8C&rft.au=%E8%83%A1%E5%9B%BD%E5%BF%A0&rft.au=%E6%9C%B1%E5%AE%B6%E9%94%8C&rft.au=%E8%AE%B8%E5%AE%B6%E6%9E%97&rft.date=2024&rft.pub=%E4%B8%AD%E5%9B%BD%E7%9F%BF%E4%B8%9A%E5%A4%A7%E5%AD%A6%E7%85%A4%E7%82%AD%E7%B2%BE%E7%BB%86%E5%8B%98%E6%8E%A2%E4%B8%8E%E6%99%BA%E8%83%BD%E5%BC%80%E5%8F%91%E5%85%A8%E5%9B%BD%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E6%B1%9F%E8%8B%8F%E5%BE%90%E5%B7%9E+221116%25%E4%B8%AD%E5%9B%BD%E7%9F%BF%E4%B8%9A%E5%A4%A7%E5%AD%A6%E7%85%A4%E7%82%AD%E7%B2%BE%E7%BB%86%E5%8B%98%E6%8E%A2%E4%B8%8E%E6%99%BA%E8%83%BD%E5%BC%80%E5%8F%91%E5%85%A8%E5%9B%BD%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E6%B1%9F%E8%8B%8F%E5%BE%90%E5%B7%9E+221116&rft.issn=0253-2336&rft.volume=52&rft.issue=4&rft.spage=203&rft.epage=213&rft_id=info:doi/10.12438%2Fcst.2024-0065&rft.externalDocID=mtkxjs202404017 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fmtkxjs%2Fmtkxjs.jpg |