顶板瓦斯抽采巷布置位置智能预测方法

TD712; 顶板瓦斯抽采巷因具有大流量和连续抽采的优点,被广泛用于高瓦斯或突出矿井回采工作面瓦斯治理.如何确定合理的顶板巷布置位置,以高效抽采采空区卸压瓦斯,是保障工作面瓦斯治理效果的关键.为此,在深入分析顶板瓦斯抽采巷布置原则及其布置位置影响因素的基础上,提出了一种基于GA-BP神经网络模型的顶板瓦斯抽采巷布置位置智能预测方法;采用灰色关联分析法确定了GA-BP神经网络模型的预测指标,并设计开发了顶板瓦斯抽采巷布置位置智能预测系统.研究结果表明:①工作面的采厚、埋深、覆岩结构、煤层倾角、倾向长度等 5个物理指标是顶板瓦斯抽采巷布置位置的主控因素,且其权重值排序由大到小依次为采厚、埋深、覆岩...

Full description

Saved in:
Bibliographic Details
Published in煤炭科学技术 Vol. 52; no. 4; pp. 203 - 213
Main Authors 郭世斌, 胡国忠, 朱家锌, 许家林, 秦伟, 杨南
Format Journal Article
LanguageChinese
Published 中国矿业大学煤炭精细勘探与智能开发全国重点实验室,江苏徐州 221116%中国矿业大学煤炭精细勘探与智能开发全国重点实验室,江苏徐州 221116 2024
中国矿业大学矿业工程学院,江苏徐州 221116%中国矿业大学矿业工程学院,江苏徐州 221116
Subjects
Online AccessGet full text
ISSN0253-2336
DOI10.12438/cst.2024-0065

Cover

Abstract TD712; 顶板瓦斯抽采巷因具有大流量和连续抽采的优点,被广泛用于高瓦斯或突出矿井回采工作面瓦斯治理.如何确定合理的顶板巷布置位置,以高效抽采采空区卸压瓦斯,是保障工作面瓦斯治理效果的关键.为此,在深入分析顶板瓦斯抽采巷布置原则及其布置位置影响因素的基础上,提出了一种基于GA-BP神经网络模型的顶板瓦斯抽采巷布置位置智能预测方法;采用灰色关联分析法确定了GA-BP神经网络模型的预测指标,并设计开发了顶板瓦斯抽采巷布置位置智能预测系统.研究结果表明:①工作面的采厚、埋深、覆岩结构、煤层倾角、倾向长度等 5个物理指标是顶板瓦斯抽采巷布置位置的主控因素,且其权重值排序由大到小依次为采厚、埋深、覆岩结构、煤层倾角、倾向长度.②随着遗传代数的增加,GA-BP神经网络适应度不断减小,且当遗传代数为 60时其适应度变化基本稳定,表明GA-BP神经网络初始权重和偏置效果较好.③在当前训练样本数据集的前提下,基于GA-BP神经网络模型的顶板瓦斯抽采巷布置位置的预测结果与实际工况值的相对误差仅为0.43%~11.27%,在可接受的范围内.该研究可为顶板瓦斯抽采巷精准设计提供一定的参考.
AbstractList TD712; 顶板瓦斯抽采巷因具有大流量和连续抽采的优点,被广泛用于高瓦斯或突出矿井回采工作面瓦斯治理.如何确定合理的顶板巷布置位置,以高效抽采采空区卸压瓦斯,是保障工作面瓦斯治理效果的关键.为此,在深入分析顶板瓦斯抽采巷布置原则及其布置位置影响因素的基础上,提出了一种基于GA-BP神经网络模型的顶板瓦斯抽采巷布置位置智能预测方法;采用灰色关联分析法确定了GA-BP神经网络模型的预测指标,并设计开发了顶板瓦斯抽采巷布置位置智能预测系统.研究结果表明:①工作面的采厚、埋深、覆岩结构、煤层倾角、倾向长度等 5个物理指标是顶板瓦斯抽采巷布置位置的主控因素,且其权重值排序由大到小依次为采厚、埋深、覆岩结构、煤层倾角、倾向长度.②随着遗传代数的增加,GA-BP神经网络适应度不断减小,且当遗传代数为 60时其适应度变化基本稳定,表明GA-BP神经网络初始权重和偏置效果较好.③在当前训练样本数据集的前提下,基于GA-BP神经网络模型的顶板瓦斯抽采巷布置位置的预测结果与实际工况值的相对误差仅为0.43%~11.27%,在可接受的范围内.该研究可为顶板瓦斯抽采巷精准设计提供一定的参考.
Abstract_FL The roof gas drainage roadway,with its advantages of large flow and continuous extraction,is widely used in the gas control of high gas or outburst mine working faces.How to determine the reasonable arrangement position of the roof roadway to efficiently extract the pressure-relief gas in the goaf is key to ensuring the effect of gas control on the working face.Therefore,through a deep analysis of the arrangement principles of the roof gas drainage roadway and the main controlling factors of its arrangement position,an intelligent predic-tion method for the arrangement position of the roof gas drainage roadway based on the GA-BP neural network model is proposed.The prediction indicators of the GA-BP neural network model were determined using the grey correlation analysis method,and an intelligent prediction system for the arrangement position of the roof gas drainage roadway was designed and developed.The research results show:①The mining thickness,burial depth,overlying rock structure,coal seam dip angle,and dip length of the working face are the main con-trolling factors for the arrangement position of the roof gas drainage roadway,and their weight values are ranked as:mining thickness>burial depth>overlying rock structure>coal seam dip angle>dip length;②With the increase of genetic generations,the fitness of the GA-BP neural network continuously decreases,and when the genetic generation is 60,its fitness change is basically stable,indicating that the initial weight and bias of the GA-BP neural network are good;③Under the premise of the current training sample data set,the relat-ive error of the prediction result of the arrangement position of the roof gas drainage roadway based on the GA-BP neural network model and the actual working condition value is only 0.43%~11.27%,which is within an acceptable range.This research can provide a certain reference for the precise design of the arrangement of the roof gas drainage roadway.
Author 朱家锌
许家林
郭世斌
胡国忠
杨南
秦伟
AuthorAffiliation 中国矿业大学矿业工程学院,江苏徐州 221116%中国矿业大学矿业工程学院,江苏徐州 221116;中国矿业大学煤炭精细勘探与智能开发全国重点实验室,江苏徐州 221116%中国矿业大学煤炭精细勘探与智能开发全国重点实验室,江苏徐州 221116
AuthorAffiliation_xml – name: 中国矿业大学矿业工程学院,江苏徐州 221116%中国矿业大学矿业工程学院,江苏徐州 221116;中国矿业大学煤炭精细勘探与智能开发全国重点实验室,江苏徐州 221116%中国矿业大学煤炭精细勘探与智能开发全国重点实验室,江苏徐州 221116
Author_FL GUO Shibin
YANG Nan
QIN Wei
ZHU Jiaxin
HU Guozhong
XU Jialin
Author_FL_xml – sequence: 1
  fullname: GUO Shibin
– sequence: 2
  fullname: HU Guozhong
– sequence: 3
  fullname: ZHU Jiaxin
– sequence: 4
  fullname: XU Jialin
– sequence: 5
  fullname: QIN Wei
– sequence: 6
  fullname: YANG Nan
Author_xml – sequence: 1
  fullname: 郭世斌
– sequence: 2
  fullname: 胡国忠
– sequence: 3
  fullname: 朱家锌
– sequence: 4
  fullname: 许家林
– sequence: 5
  fullname: 秦伟
– sequence: 6
  fullname: 杨南
BookMark eNotj71KA0EUhaeIYIxpfQWrjXfunZndlBL8g4CN1mF2d0aMugEnon2EgGIlCVhYaGGphWhUWHwZM3HfwhVtzum-850FVsl6mWFsiUODo6BoJXH9BgKKAEDJCqsCSgqQSM2zunP7MUhOoeCgqoyKu1d_-zm7fvDjJ3-RF8PhdDKZvg1m-eNXflWmv_n4HuTF_bl_ufTjd_88WmRzVh86U__vGttdX9tpbQbt7Y2t1mo7cBwwDFKtLVphrBZxgjKMjExRWpuKptDGIkmt0CgeK4i4SJMw5tQs9VOyXKsooRpb_uOe6szqbK_T7Z0cZ-Vi56h_cNZ1vxdBAA_pB6FkW0Q
ClassificationCodes TD712
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.12438/cst.2024-0065
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Intelligent prediction method for roof gas drainage roadway layout
EndPage 213
ExternalDocumentID mtkxjs202404017
GrantInformation_xml – fundername: (国家自然科学基金); 江苏高校青蓝工程资助项目; (江苏省六大人才高峰高层次人才资助项目)
  funderid: (国家自然科学基金); 江苏高校青蓝工程资助项目; (江苏省六大人才高峰高层次人才资助项目)
GroupedDBID -02
2B.
4A8
5XA
5XC
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CDRFL
CW9
GROUPED_DOAJ
PSX
TCJ
TGT
U1G
U5L
ID FETCH-LOGICAL-s1027-daaf2f4efa4bc2578e5d25ffd494aef235a62e61b60814dc7b139438d3f1a68c3
ISSN 0253-2336
IngestDate Thu May 29 04:07:34 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords genetic algorithm
顶板瓦斯抽采巷
遗传算法
intelligent prediction
gas drainage
智能预测
巷道布置
roof gas drainage roadway
瓦斯抽采
precision arrangement
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1027-daaf2f4efa4bc2578e5d25ffd494aef235a62e61b60814dc7b139438d3f1a68c3
PageCount 11
ParticipantIDs wanfang_journals_mtkxjs202404017
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle 煤炭科学技术
PublicationTitle_FL Coal Science and Technology
PublicationYear 2024
Publisher 中国矿业大学煤炭精细勘探与智能开发全国重点实验室,江苏徐州 221116%中国矿业大学煤炭精细勘探与智能开发全国重点实验室,江苏徐州 221116
中国矿业大学矿业工程学院,江苏徐州 221116%中国矿业大学矿业工程学院,江苏徐州 221116
Publisher_xml – name: 中国矿业大学煤炭精细勘探与智能开发全国重点实验室,江苏徐州 221116%中国矿业大学煤炭精细勘探与智能开发全国重点实验室,江苏徐州 221116
– name: 中国矿业大学矿业工程学院,江苏徐州 221116%中国矿业大学矿业工程学院,江苏徐州 221116
SSID ssib051374106
ssj0037581
ssib001105251
ssib012291398
ssib036204842
Score 2.3700683
Snippet TD712; 顶板瓦斯抽采巷因具有大流量和连续抽采的优点,被广泛用于高瓦斯或突出矿井回采工作面瓦斯治理.如何确定合理的顶板巷布置位置,以高效抽采采空区卸压瓦斯,是保障工作...
SourceID wanfang
SourceType Aggregation Database
StartPage 203
Title 顶板瓦斯抽采巷布置位置智能预测方法
URI https://d.wanfangdata.com.cn/periodical/mtkxjs202404017
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 0253-2336
  databaseCode: DOA
  dateStart: 20210101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0037581
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw7V1Li9RAEG7W8aIH8Ylv5mCfJJp0d5LuY_dMhkXQ0y7sbUkmiaI4gjMLstcVFhRP4oIHD3rwqAfRVWHwz7hZ5-ZPsKo7MxPXBR9nIYROp7r6q6qQqmr6QcilPI_jMk6ll-V56glwAJ7CHYdEVsRKsdyXBa4dvn4jWlwW11bClYXW98aspbVRdqW_vu-6kn-xKtSBXXGV7F9YdsYUKqAM9oU7WBjuf2RjmiiqA2oimkRUdanp0SSmilPtaiKqe1iQmpouEkPmD1cSUhPjhQVJJcdWQKATmggsyG6jBvgoajRNLKXjoxmVAl-ZkEpT92WUreHUnWc5DXmRlQypFrbAqLbMNeAMEAA8OrQAUvqWVQdgTz8Ei5rbRgLBqqlksjMnsci0ZaeMhRiiLrQ_J7FsjesxsRpTVIk9XPCNbJBAo4S6ib3TkRE2HxOtEeluo1-QqmfN4MBqy0ygtHNR91OHYdQktmCojJAY1Kqk1UuC6nYM5b72AGE7VnfQqlerFbuQDWDO9t26UzSVlRLkQ3OC6jt1DQBjHWvIAGXBXgyyxV6A3q-_HpVcZpDV45hM-F8RqIiGS2Uh9xh3W-5M_X_IGv850XTmPm_Ehcytmf4l5GDCnjDQH-LMbCY8DOrnwdVsyuvd0Z0Ht4dIAW4ziA-QgwxHEBuDQDaBCfBcyZnHDRjDbXtnHpLj6RFSzBKSMOCQEeA8CRd7csj-7RmhUznrbWoR49WfENo1ioMyHdxshNNLR8mROg9ua_dTO0YW1m8dJ4cbu6OeIHzy8kP14svu09fV1tvq0Xiyubmzvb3zcWN3_Obr-Ancq-efv22MJ68eVu8fV1ufqnfPTpLlXrLUWfTqM168IaQ2sZenaclKUZSpyPoYPhRhzsKyzIUSaVEyHqYRK6IgiyB3EXk_zkAfIE3OyyCNZJ-fIq3BvUFxmrTjNIzi3M98mYGKSqmKQPSZAmcT88IXxRnSrkVerf_hw9U9Vjn7e5Jz5JBTIo7Cniet0f214gLkJaPsojXlD95U2AY
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%A1%B6%E6%9D%BF%E7%93%A6%E6%96%AF%E6%8A%BD%E9%87%87%E5%B7%B7%E5%B8%83%E7%BD%AE%E4%BD%8D%E7%BD%AE%E6%99%BA%E8%83%BD%E9%A2%84%E6%B5%8B%E6%96%B9%E6%B3%95&rft.jtitle=%E7%85%A4%E7%82%AD%E7%A7%91%E5%AD%A6%E6%8A%80%E6%9C%AF&rft.au=%E9%83%AD%E4%B8%96%E6%96%8C&rft.au=%E8%83%A1%E5%9B%BD%E5%BF%A0&rft.au=%E6%9C%B1%E5%AE%B6%E9%94%8C&rft.au=%E8%AE%B8%E5%AE%B6%E6%9E%97&rft.date=2024&rft.pub=%E4%B8%AD%E5%9B%BD%E7%9F%BF%E4%B8%9A%E5%A4%A7%E5%AD%A6%E7%85%A4%E7%82%AD%E7%B2%BE%E7%BB%86%E5%8B%98%E6%8E%A2%E4%B8%8E%E6%99%BA%E8%83%BD%E5%BC%80%E5%8F%91%E5%85%A8%E5%9B%BD%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E6%B1%9F%E8%8B%8F%E5%BE%90%E5%B7%9E+221116%25%E4%B8%AD%E5%9B%BD%E7%9F%BF%E4%B8%9A%E5%A4%A7%E5%AD%A6%E7%85%A4%E7%82%AD%E7%B2%BE%E7%BB%86%E5%8B%98%E6%8E%A2%E4%B8%8E%E6%99%BA%E8%83%BD%E5%BC%80%E5%8F%91%E5%85%A8%E5%9B%BD%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E6%B1%9F%E8%8B%8F%E5%BE%90%E5%B7%9E+221116&rft.issn=0253-2336&rft.volume=52&rft.issue=4&rft.spage=203&rft.epage=213&rft_id=info:doi/10.12438%2Fcst.2024-0065&rft.externalDocID=mtkxjs202404017
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fmtkxjs%2Fmtkxjs.jpg