基于改进YOLOv8的草莓识别与果梗采摘关键点检测

TP391.4%S24; 为解决草莓采摘机器人工作过程中果梗采摘点定位精度低和遮挡草莓识别困难等问题,该研究提出一种改进后YOLOv8算法与pose关键点检测算法相结合的草莓识别定位方法.通过对YOLOv8进行优化,引入BiFPN(bidirectional feature pyramid network)和 GAM(generalized attention module)模块以强化模型的双向信息流,动态分配特征权重,并专注于小目标特征的提取和强化被遮挡区域特征,旨在提升模型复杂环境中采摘点定位准确率和遮挡识别的预测准确性.试验结果显示,相比于原始模型,经过改进的YOLOv8-pose模型在...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 40; no. 18; pp. 167 - 175
Main Authors 杨震宇, 汪小旵, 祁子涵, 王得志
Format Journal Article
LanguageChinese
Published 南京农业大学工学院,南京 210031%南京农业大学工学院,南京 210031 01.09.2024
江苏省现代农业设施农业技术与装备试验室,南京 210031
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.202405044

Cover

Abstract TP391.4%S24; 为解决草莓采摘机器人工作过程中果梗采摘点定位精度低和遮挡草莓识别困难等问题,该研究提出一种改进后YOLOv8算法与pose关键点检测算法相结合的草莓识别定位方法.通过对YOLOv8进行优化,引入BiFPN(bidirectional feature pyramid network)和 GAM(generalized attention module)模块以强化模型的双向信息流,动态分配特征权重,并专注于小目标特征的提取和强化被遮挡区域特征,旨在提升模型复杂环境中采摘点定位准确率和遮挡识别的预测准确性.试验结果显示,相比于原始模型,经过改进的YOLOv8-pose模型在草莓识别准确率(precision,P)、召回率(recall,R)、平均精度(mean average precision,mAP)及关键点平均精度(mean average precision-key point,mAPkp)上分别提高6.01、1.98、6.67和7.85个百分点,基于关键点检测的果梗采摘点在X、Y、Z方向定位误差分别为1.4、1.4和2.2 mm.此外,根据草莓遮挡重叠区域面积对草莓遮挡程度分类,利用不同遮挡程度对模型性能验证,在遮挡情况下改进后YOLOv8-pose,mAPkp比原模型提高9.78个百分点.基于该研究所提出的视觉模型,机器人在田间试验下的采摘成功率为95%,单个草莓的采摘耗时10 s,可为实现机器人精准采摘提供重要的技术支持.
AbstractList TP391.4%S24; 为解决草莓采摘机器人工作过程中果梗采摘点定位精度低和遮挡草莓识别困难等问题,该研究提出一种改进后YOLOv8算法与pose关键点检测算法相结合的草莓识别定位方法.通过对YOLOv8进行优化,引入BiFPN(bidirectional feature pyramid network)和 GAM(generalized attention module)模块以强化模型的双向信息流,动态分配特征权重,并专注于小目标特征的提取和强化被遮挡区域特征,旨在提升模型复杂环境中采摘点定位准确率和遮挡识别的预测准确性.试验结果显示,相比于原始模型,经过改进的YOLOv8-pose模型在草莓识别准确率(precision,P)、召回率(recall,R)、平均精度(mean average precision,mAP)及关键点平均精度(mean average precision-key point,mAPkp)上分别提高6.01、1.98、6.67和7.85个百分点,基于关键点检测的果梗采摘点在X、Y、Z方向定位误差分别为1.4、1.4和2.2 mm.此外,根据草莓遮挡重叠区域面积对草莓遮挡程度分类,利用不同遮挡程度对模型性能验证,在遮挡情况下改进后YOLOv8-pose,mAPkp比原模型提高9.78个百分点.基于该研究所提出的视觉模型,机器人在田间试验下的采摘成功率为95%,单个草莓的采摘耗时10 s,可为实现机器人精准采摘提供重要的技术支持.
Abstract_FL Robotic harvesting had been constrained by the low positioning accuracy of strawberry stem picking points and the significant challenge of identifying occluded strawberries.In this study,we proposed an improved YOLOv8 model combined with Pose key-point detection for enhanced strawberry recognition and localization.The accuracy of picking point localization was also improved,especially for occluded strawberries in complex environments.To optimize the YOLOv8 model,we introduced the Bidirectional Feature Pyramid Network(BiFPN)and the Generalized Attention Module(GAM),which enhanced bidirectional information flow,dynamically allocated feature weights,and focused on extracting features of small targets and enhancing the features of occluded regions.As a result,the model's ability to accurately detect and localize strawberries in complex environments was significantly improved.Experimental results showed that the improved YOLOv8-pose model outperformed the original model in several metrics:the Precision(P)increased by 6.01 percentage points,Recall(R)by 1.98 percentage points,mean Average Precision(mAP)by 6.67 percentage points,and mean Average Precision for key points(mAPkp)by 7.85 percentage points.The positioning accuracy for strawberry stem picking points,based on key-point detection,achieved errors of just 1.4 mm in both the x and y directions and 2.2 mm in the z direction.Additionally,the occlusion level was classified according to the overlap area of occluded strawberries,and the model's performance under varying occlusion conditions was assessed.Under these conditions,the mAPkp of the improved YOLOv8-pose model increased by 9.78 percentage points compared to the original model.Field trials further validated the model's effectiveness,with the strawberry-picking robot achieving a 95%success rate,picking each strawberry within 10 seconds.The high success rate and short picking time demonstrated the practicality of the model in real-world agricultural settings,indicating its high efficiency and accuracy.The improved YOLOv8 model with key-point detection accurately and robustly recognized strawberries,leveraged multi-scale features with the BiFPN architecture,and focused attention on relevant regions with the GAM,especially for occluded strawberries.These advancements significantly improved overall performance in precision,recall,and average precision,particularly under occlusion scenarios.In conclusion,these advanced techniques were integrated into a more capable strawberry-picking robot system.The enhanced accuracy and efficiency achieved in recognizing and localizing strawberries,even in challenging occlusion scenarios,highlighted the system's potential for practical agricultural applications.The findings contributed significantly to automated strawberry harvesting in agricultural robotics,paving the way for more efficient and cost-effective farming solutions in sustainable production.
Author 汪小旵
祁子涵
王得志
杨震宇
AuthorAffiliation 南京农业大学工学院,南京 210031%南京农业大学工学院,南京 210031;江苏省现代农业设施农业技术与装备试验室,南京 210031
AuthorAffiliation_xml – name: 南京农业大学工学院,南京 210031%南京农业大学工学院,南京 210031;江苏省现代农业设施农业技术与装备试验室,南京 210031
Author_FL QI Zihan
WANG Dezhi
YANG Zhenyu
WANG Xiaochan
Author_FL_xml – sequence: 1
  fullname: YANG Zhenyu
– sequence: 2
  fullname: WANG Xiaochan
– sequence: 3
  fullname: QI Zihan
– sequence: 4
  fullname: WANG Dezhi
Author_xml – sequence: 1
  fullname: 杨震宇
– sequence: 2
  fullname: 汪小旵
– sequence: 3
  fullname: 祁子涵
– sequence: 4
  fullname: 王得志
BookMark eNrjYmDJy89LZWBQNjTQMzS0NDfVz9LLLC7O0zM0MDDSNbMwtNQzMjAyMTA1MDFhYeCEi3Iw8BYXZyYZmBoamxsYmBhyMtg_nb_rya6-Z1N2vtg_O9Lfx7_M4vmslhe9nS_6Jr9Y3_a0Y_WTHX3P5s15tmj6y_b2ZxNnPG3d_HLKuudNO58tbni2tZuHgTUtMac4lRdKczOEurmGOHvo-vi7ezo7-ugWGxoYmesaW1okGxmZp5ommhuZJBpamJgnGVkkJaYaGlqkmaYkpVmmpCUbWyQZmqVZmCaZmKckphgapCYbGqUmJqWZG1paGHMzqEPMLU_MS0vMS4_Pyi8tygPaGJ9XmZ5ckQTyrqGFgaG5MQCQsWMT
ClassificationCodes TP391.4%S24
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.202405044
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitle_FL Recognizing strawberry to detect the key points for peduncle picking using improved YOLOv8 model
EndPage 175
ExternalDocumentID nygcxb202418017
GrantInformation_xml – fundername: 江苏省农业科技自主创新资金(CX(21)2006)(CX
  funderid: (21)2006)
GroupedDBID -04
2B.
4A8
5XA
5XE
92G
92I
93N
ABDBF
ABJNI
ACGFO
ACGFS
ACUHS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CW9
EOJEC
FIJ
IPNFZ
OBODZ
PSX
RIG
TCJ
TGD
TUS
U1G
U5N
ID FETCH-LOGICAL-s1027-398c227e5a724a1847b28bae118f5dbf9dfc38b16f85b47dad10ec12eabf71983
ISSN 1002-6819
IngestDate Thu May 29 04:08:37 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 18
Keywords 遮挡
采摘
occlusion
YOLOv8
strawberry
草莓
图像识别
picking
image recognition
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1027-398c227e5a724a1847b28bae118f5dbf9dfc38b16f85b47dad10ec12eabf71983
PageCount 9
ParticipantIDs wanfang_journals_nygcxb202418017
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationTitle 农业工程学报
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2024
Publisher 南京农业大学工学院,南京 210031%南京农业大学工学院,南京 210031
江苏省现代农业设施农业技术与装备试验室,南京 210031
Publisher_xml – name: 江苏省现代农业设施农业技术与装备试验室,南京 210031
– name: 南京农业大学工学院,南京 210031%南京农业大学工学院,南京 210031
SSID ssib051370041
ssj0041925
ssib001101065
ssib023167668
Score 2.475981
Snippet TP391.4%S24; 为解决草莓采摘机器人工作过程中果梗采摘点定位精度低和遮挡草莓识别困难等问题,该研究提出一种改进后YOLOv8算法与pose关键点检测算法相结合的草莓识别定位...
SourceID wanfang
SourceType Aggregation Database
StartPage 167
Title 基于改进YOLOv8的草莓识别与果梗采摘关键点检测
URI https://d.wanfangdata.com.cn/periodical/nygcxb202418017
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate - TFS
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvR3LahRBsMkDRA_iE98EtE-SuN0z_TpJz-4sQcRcEoinMDM7E08r5CGak4gaRQyIAUVFQY-CHkQwufgzyWbjV1jVMzs7JBEfB2Foiu7qquqq6anqobqbkAtS4s6ALAILJMmobxKYUmnSghmfgXvWGcT07rTPa3J8yr8yLaYHBn9UspYWF-KxZGnPfSX_YlWoA7viLtm_sGxJFCoABvtCCRaG8o9sTENBTZMGloY-ljqkoaQGYENDTYMmNcH1iasTtzQNFTWA4GO9blDtEADfeAjYJtUSqWmAA0dN96gBTh0By6lRNDRUK3ywiVGjXS9BAw-bgLUNkZfmTgbo5WEuBQABoAXVUNh1lI64YwfiQU2gqBVIwYIAAdbYBrUSKWgLTb0XxPFvIBayrTuJBDLvO1bHlVGb061R3XSdFIjSR3HsNCsYmVxUuQMFNJHLEoROB8KpVlX_mHC_TAnL33E3vIZDd7ax9b0HbEFlqjLOUgVlDYzPoPZ5fTfNi7CWhg8m5eK_8qu4MvR1UhcOqfB1-dFYvTmtK56L5beiFEEQy6-z2e1fjRLOwSKLsZLFGKq5Jmr5UZ47DjBv35lNbseIwSAcUoNkmIMHrg2RYRs0gmY_eGf4f6L0LhzPaJD9xbBgHl7FUCZwYfqCcLkMhRD7yPmeiJd-LaDbnNfOovZsJY6cPEQOFgvAEZvP5sNkYOnGEXLAzs4Vh-CkR8nlzXfrG-srndW17vfX-fzdenW_-_Rxd-V59_PDzUcfN76tdN6-6bx_sb283Hn2cvPBl-3VT1v31jof7na-PjlGpprhZH18tLjoZHQe4ntw8kYnnKtURIr7EYOAMeY6jlJY_GeiFWemlSWejpnMtIh91YparJYmjKdRnClmtHecDLVvttMTZCSTXsKVYqrlpX6SGB1JBXQi5vupMjX_JBkphj9TfMjmZ3YY6NTvUU6T_f2JdYYMLcwtpmchOF-IzxVW_QnBuqZ1
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%94%B9%E8%BF%9BYOLOv8%E7%9A%84%E8%8D%89%E8%8E%93%E8%AF%86%E5%88%AB%E4%B8%8E%E6%9E%9C%E6%A2%97%E9%87%87%E6%91%98%E5%85%B3%E9%94%AE%E7%82%B9%E6%A3%80%E6%B5%8B&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E6%9D%A8%E9%9C%87%E5%AE%87&rft.au=%E6%B1%AA%E5%B0%8F%E6%97%B5&rft.au=%E7%A5%81%E5%AD%90%E6%B6%B5&rft.au=%E7%8E%8B%E5%BE%97%E5%BF%97&rft.date=2024-09-01&rft.pub=%E5%8D%97%E4%BA%AC%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%B7%A5%E5%AD%A6%E9%99%A2%2C%E5%8D%97%E4%BA%AC+210031%25%E5%8D%97%E4%BA%AC%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%B7%A5%E5%AD%A6%E9%99%A2%2C%E5%8D%97%E4%BA%AC+210031&rft.issn=1002-6819&rft.volume=40&rft.issue=18&rft.spage=167&rft.epage=175&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.202405044&rft.externalDocID=nygcxb202418017
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg