基于像素梯度自适应迭代中值滤波器的图像脉冲噪声抑制算法

TN215%TPT51.1; 图像脉冲噪声移除是获得高质量图像的关键.本文通过热红外相机成像原理研究,提出了一种基于像素梯度自适应迭代中值滤波器的图像脉冲噪声抑制算法.首先,根据相机的调制传递函数计算获取原始图像的最大像素梯度,继而建立相应的像素梯度集合.然后,计算原始图像与对应像素梯度滤波图像的梯度权重均方根误差集合,并将该集合高斯分布的最大值对应的像素梯度确定为最佳像素梯度.最后,根据图像中脉冲噪声的密度和复杂度,确定所提滤波器的自适应窗口大小和迭代次数.大量实验结果表明,所提滤波器对移除8位、16位的单通道脉冲噪声图像展现出良好的鲁棒性.与其他先进方法相比,该方法可以实时移除真实热红外相...

Full description

Saved in:
Bibliographic Details
Published in红外与毫米波学报 Vol. 43; no. 3; pp. 423 - 436
Main Authors 金祥博, 王跃明
Format Journal Article
LanguageChinese
Published 中国科学院大学,北京 100049 01.06.2024
中国科学院上海技术物理研究所 空间主动光电技术重点实验室,上海 200083
Subjects
Online AccessGet full text
ISSN1001-9014
DOI10.11972/j.issn.1001-9014.2024.03.017

Cover

Abstract TN215%TPT51.1; 图像脉冲噪声移除是获得高质量图像的关键.本文通过热红外相机成像原理研究,提出了一种基于像素梯度自适应迭代中值滤波器的图像脉冲噪声抑制算法.首先,根据相机的调制传递函数计算获取原始图像的最大像素梯度,继而建立相应的像素梯度集合.然后,计算原始图像与对应像素梯度滤波图像的梯度权重均方根误差集合,并将该集合高斯分布的最大值对应的像素梯度确定为最佳像素梯度.最后,根据图像中脉冲噪声的密度和复杂度,确定所提滤波器的自适应窗口大小和迭代次数.大量实验结果表明,所提滤波器对移除8位、16位的单通道脉冲噪声图像展现出良好的鲁棒性.与其他先进方法相比,该方法可以实时移除真实热红外相机采集图像中低密度的随机值脉冲噪声和SAPN,并实现噪声抑制过程中99.5%以上的原始像素不会遭受破坏.除此之外,针对高密度SAPN抑制,该方法获得了具有竞争力的结果,与运行时间较快的滤波方法相比表现出较好的PSNR和SSIM,与PSNR和SSIM较优秀的去噪方法相比表现出较快的运行时间.对于极限SAPN(99%)破坏的图像,也能够恢复有意义的图像细节.
AbstractList TN215%TPT51.1; 图像脉冲噪声移除是获得高质量图像的关键.本文通过热红外相机成像原理研究,提出了一种基于像素梯度自适应迭代中值滤波器的图像脉冲噪声抑制算法.首先,根据相机的调制传递函数计算获取原始图像的最大像素梯度,继而建立相应的像素梯度集合.然后,计算原始图像与对应像素梯度滤波图像的梯度权重均方根误差集合,并将该集合高斯分布的最大值对应的像素梯度确定为最佳像素梯度.最后,根据图像中脉冲噪声的密度和复杂度,确定所提滤波器的自适应窗口大小和迭代次数.大量实验结果表明,所提滤波器对移除8位、16位的单通道脉冲噪声图像展现出良好的鲁棒性.与其他先进方法相比,该方法可以实时移除真实热红外相机采集图像中低密度的随机值脉冲噪声和SAPN,并实现噪声抑制过程中99.5%以上的原始像素不会遭受破坏.除此之外,针对高密度SAPN抑制,该方法获得了具有竞争力的结果,与运行时间较快的滤波方法相比表现出较好的PSNR和SSIM,与PSNR和SSIM较优秀的去噪方法相比表现出较快的运行时间.对于极限SAPN(99%)破坏的图像,也能够恢复有意义的图像细节.
Abstract_FL Image impulse noise removal is essential for obtaining high-quality images.A novel pixel gradients-based adaptive iterative median filter is proposed to remove image impulse noise by utilizing the principles of ther-mal infrared camera imaging.Firstly,the maximum pixel gradient of the original image is computed based on the camera's modulation transfer function(MTF),and a corresponding set of pixel gradients is established.Subse-quently,the gradient weight root-mean-square error(GWRMSE)set of the original image and the corresponding pixel gradient filtered image is computed,and the optimal pixel gradient is determined as the one corresponding to the maximum value of Gaussian distribution of the GWRMSE set.Finally,the adaptive window size and number of iterations for the proposed filter are determined according to the density and complexity of the impulse noise in the image.Extensive experimental results demonstrate that the proposed filter exhibits excellent robustness in re-moving 8-bit and 16-bit single-channel impulse noise images.In comparison with other state-of-the-art methods,the proposed method can remove low-density random-valued impulse noise(RVIN)and salt-and-pepper noise(SAPN)in real thermal infrared camera-acquired images in real-time while preserving more than 99.5%of origi-nal pixels during the noise removal process.Additionally,for high-density SAPN removal,the proposed method achieves competitive results,demonstrating better peak signal-to-noise ratio(PSNR)and structural similarity in-dex(SSIM)in comparison with filtering methods of faster running time and faster execution time in comparison with denoising methods of superior PSNR and SSIM.Moreover,it can recover meaningful image details even for images severely damaged by extreme SAPN(99%).
Author 金祥博
王跃明
AuthorAffiliation 中国科学院上海技术物理研究所 空间主动光电技术重点实验室,上海 200083;中国科学院大学,北京 100049
AuthorAffiliation_xml – name: 中国科学院上海技术物理研究所 空间主动光电技术重点实验室,上海 200083;中国科学院大学,北京 100049
Author_FL WANG Yue-Ming
JIN Xiang-Bo
Author_FL_xml – sequence: 1
  fullname: JIN Xiang-Bo
– sequence: 2
  fullname: WANG Yue-Ming
Author_xml – sequence: 1
  fullname: 金祥博
– sequence: 2
  fullname: 王跃明
BookMark eNo9kE9LAkEYxudgkJkfIzrt9r4z48zuMaR_IERQZ9nV2VRqhZaQblJS2aEIirAOhUaEYEVGxBr1ZZzVvkVG0emBh4ffA78JEvPLviJkCsFEtCWdKZnFIPBNBEDDBuQmBcpNYCagjJH4fz9OkkFQdIFZILkQdpys6OuwHx7rvZPBy03UfNTh3fCg_VXd1eHZ8LPT77X6bx1dfY96t1G3qRv3g8uavvoY7Ye1ut5_1o22bj1FR6f68HXwcBF1zyfJmOdsBCr5lwmyNj-3ml40MssLS-nZjBEgUGmgp1ByzEvmKuEJoaycsCgonkKb2zkrZQl0XaY4CpbnKchRhVzmqRCcCU4dliDTv9yK43uOv54tlbe3_NFjtlDZKWy6PwqAjQSwbx0jcdU
ClassificationCodes TN215%TPT51.1
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11972/j.issn.1001-9014.2024.03.017
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
DocumentTitle_FL Pixel gradient-based adaptive iterative median filter for image impulse noise removal
EndPage 436
ExternalDocumentID hwyhmb202403017
GroupedDBID 2B.
4A8
5VS
5XA
5XJ
92H
92I
93N
ABJNI
ACGFS
AENEX
ALMA_UNASSIGNED_HOLDINGS
CW9
DU5
IPNFZ
KQ8
OK1
PSX
RIG
RNS
TCJ
TGT
U1G
U5S
ID FETCH-LOGICAL-s1027-1fe1741d73be6f66e8c6820e451949c85861bb3e4163d450c2e147d26643642a3
ISSN 1001-9014
IngestDate Thu May 29 04:07:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 自适应迭代中值滤波器
图像去噪
像素梯度
Modulation Transfer Function
adaptive iterative median filter
impulse noise
脉冲噪声
调制传递函数
image denoising
pixel gradient
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1027-1fe1741d73be6f66e8c6820e451949c85861bb3e4163d450c2e147d26643642a3
PageCount 14
ParticipantIDs wanfang_journals_hwyhmb202403017
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationTitle 红外与毫米波学报
PublicationTitle_FL Journal of Infrared and Millimeter Waves
PublicationYear 2024
Publisher 中国科学院大学,北京 100049
中国科学院上海技术物理研究所 空间主动光电技术重点实验室,上海 200083
Publisher_xml – name: 中国科学院上海技术物理研究所 空间主动光电技术重点实验室,上海 200083
– name: 中国科学院大学,北京 100049
SSID ssib038074669
ssj0039469
ssib051375082
ssib007291925
ssib002806809
ssib023167203
ssib008143719
ssib000862495
Score 2.4387195
Snippet TN215%TPT51.1; 图像脉冲噪声移除是获得高质量图像的关键.本文通过热红外相机成像原理研究,提出了一种基于像素梯度自适应迭代中值滤波器的图像脉冲噪声抑制算法.首先,根据...
SourceID wanfang
SourceType Aggregation Database
StartPage 423
Title 基于像素梯度自适应迭代中值滤波器的图像脉冲噪声抑制算法
URI https://d.wanfangdata.com.cn/periodical/hwyhmb202403017
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  issn: 1001-9014
  databaseCode: KQ8
  dateStart: 20090101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  omitProxy: true
  ssIdentifier: ssj0039469
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1da9RAMLQVxBe_xW_uwX2Sq02y2Y_HzTVHURQKLfStXHI5-9ITbKXYp6LFrwdFUKT6oLQiUqiKFZGr6J9prvVfODO3l4tV_IIjLLOzO1-bzMwlO-s4Z7iUqXR5UvaV8iFBaYiy5rVGGXx7A5YIhAS0y_XiJTEyzs9PBBN9_XPF3SWz8WAy_8t9Jf9jVYCBXXGX7D9YNp8UANAG-8IVLAzXv7IxiwKmqyw0LOJ4VRFClM9UlUWShZyZIRYJZjxmqtgFOEawSDElmYFRGj90UJ7t0hy7wiozwzRhyIxPDUWQAJHDCk6IXZwaPk6ObGhmFBLVwAYnSMjCIj8K4UoTBAbmoww2gFBIrCpgwyUc4ETghCZiWlpanZMyu8E0yWgsA8CPFpZb1INAkU1IOC6OLXIL4qAeiJwJuouO9CGJPpAN8IeMDINMPRSJs6uQNCVRNphFI8ni_yce733nRSv-BzWiZoaJhrTCWn40KaQrDvTmXV6FWKmQKsjWpnLWpcyr4FbwwzV8YV30O53yVPb-8gtOhHd2YNt4hHcKxPzs6rT0yNchhcGcwiDKSHV7O3tid1QTn5q7PjUdIw7mwrLf2eWBO8QzTy6MFuNyYc8k771-L9Z5g4zM1QVHoCDqlr26gB6WVyi83sdDDbgQeX_g-hCoqrzOm685nT2ZC7HbYV0Rz_1OQNpp12zUmpcLQeHYfmevzeZKpnNrHnD65qcOOvtsZleyfnPmkDOaPW9ttu5nNx9sfXjRXn6btV5t3179tnAjaz3a_rq2ubGy-WktW_jc3njZXl_Oll5vPV3Mnn0B_O3Fu9mt99nSarbyrn3vYXbn49abJ-31x4ed8Wo0Vhkp28NMyjMQw8uy20gh-Xfr0o9T0RAiVYmA6DvF8k5cJypQwo1jP8UEqc6DocRLXS7rED_DAuBezT_iDDSvNNOjTgmAgafrXi2B3E2nInZl6vo1jycQkKZJcMwpWa1M2ofVzOQOux__M8oJZ0_vdjnpDMxevZaeggB8Nj5Ni-U7iGeokg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%83%8F%E7%B4%A0%E6%A2%AF%E5%BA%A6%E8%87%AA%E9%80%82%E5%BA%94%E8%BF%AD%E4%BB%A3%E4%B8%AD%E5%80%BC%E6%BB%A4%E6%B3%A2%E5%99%A8%E7%9A%84%E5%9B%BE%E5%83%8F%E8%84%89%E5%86%B2%E5%99%AA%E5%A3%B0%E6%8A%91%E5%88%B6%E7%AE%97%E6%B3%95&rft.jtitle=%E7%BA%A2%E5%A4%96%E4%B8%8E%E6%AF%AB%E7%B1%B3%E6%B3%A2%E5%AD%A6%E6%8A%A5&rft.au=%E9%87%91%E7%A5%A5%E5%8D%9A&rft.au=%E7%8E%8B%E8%B7%83%E6%98%8E&rft.date=2024-06-01&rft.pub=%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%E9%99%A2%E5%A4%A7%E5%AD%A6%2C%E5%8C%97%E4%BA%AC+100049&rft.issn=1001-9014&rft.volume=43&rft.issue=3&rft.spage=423&rft.epage=436&rft_id=info:doi/10.11972%2Fj.issn.1001-9014.2024.03.017&rft.externalDocID=hwyhmb202403017
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fhwyhmb%2Fhwyhmb.jpg