基于DH-YoloX的群养马岗鹅关键行为监测
S126; 马岗鹅的行为与其生长状况和福利状况密切相关,马岗鹅关键行为监测对评估其生长性能具有重要的现实意义.为了实现对群养栏马岗鹅关键行为高效率精准监测,该研究探索一种基于YoloX的群养马岗鹅关键行为监测算法(Magang geese behavior monitoring of based on Double Head-YoloX,MGBM-DH-YoloX),该算法通过减少YoloX的头部数量提升检测效率、使用损失函数减少前景背景干扰、使用迁移训练方式提高网络训练效率等技术对马岗鹅采食、饮水、休息和应激等关键行为及其规律进行分析.MGBM-DH-YoloX首先用Mosaic和Mixup...
Saved in:
| Published in | 农业工程学报 Vol. 39; no. 2; pp. 142 - 149 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | Chinese |
| Published |
华南农业大学数学与信息学院,广州 510642%华南农业大学 农业农村部华南热带智慧农业技术重点实验室,广州 510642
2023
华南农业大学 农业农村部华南热带智慧农业技术重点实验室,广州 510642 |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1002-6819 |
| DOI | 10.11975/j.issn.1002-6819.202210079 |
Cover
| Summary: | S126; 马岗鹅的行为与其生长状况和福利状况密切相关,马岗鹅关键行为监测对评估其生长性能具有重要的现实意义.为了实现对群养栏马岗鹅关键行为高效率精准监测,该研究探索一种基于YoloX的群养马岗鹅关键行为监测算法(Magang geese behavior monitoring of based on Double Head-YoloX,MGBM-DH-YoloX),该算法通过减少YoloX的头部数量提升检测效率、使用损失函数减少前景背景干扰、使用迁移训练方式提高网络训练效率等技术对马岗鹅采食、饮水、休息和应激等关键行为及其规律进行分析.MGBM-DH-YoloX首先用Mosaic和Mixup对马岗鹅图像进行数据增强,然后使用增强后的数据集训练模型,并且利用模型检测马岗鹅的关键行为,最后累计得出马岗鹅关键行为的发生时长和行为节律;试验训练集为1400幅、验证集200幅和测试集为400幅,连续活动视频10 d.结果表明,MGBM-DH-YoloX算法的平均精度为98.98%、检测速度达到81帧/s、内存消耗为2520.04 MB.对马岗鹅的10 d养殖数据分析发现,MGBM-DH-YoloX能有效观察到马岗鹅随着日龄增长采食次数逐渐减少;试验鹅每日采食与饮水行为同时出现的比例为83.74%,呈现整体相伴趋势,但也从90.78%降低到74.57%,说明马岗鹅采食与饮水行为随着日龄增加呈现出逐渐分离趋势;试验鹅随着日龄增长休息时间逐渐加多,呈现出肉鸭对笼养的适应性逐步增强;应激行为随机性很强,突发性明显,发现人员随机走动等不规范饲喂带来的应激行为占据很大比例.该研究显示MGBM-DH-YoloX算法能利用监控视频对马岗鹅的关键行为进行智能提取,可为家禽智能养殖监管提供技术支撑. |
|---|---|
| ISSN: | 1002-6819 |
| DOI: | 10.11975/j.issn.1002-6819.202210079 |