基于循环对抗神经网络的快速最小二乘逆时偏移成像方法
P631.4; 最小二乘逆时偏移成像方法因计算量巨大,限制了其大规模的工业应用.基于此,建立循环对抗神经网络表征Hessian矩阵的逆,构建逆时偏移结果和反射系数之间的映射关系.通过建立的神经网络对逆时偏移成像结果进行去模糊化处理,提高成像质量,同时大幅减少计算时间.将训练好的网络应用于Marmousi模型和Sigsbee2A模型的逆时偏移结果.结果表明,本文方法在不显著增加计算量的情况下较好地提高了逆时偏移成像质量....
Saved in:
| Published in | 中国石油大学学报(自然科学版) Vol. 47; no. 3; pp. 55 - 61 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | Chinese |
| Published |
中国石油大学(华东)地球科学与技术学院,山东青岛 266580
01.06.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1673-5005 |
| DOI | 10.3969/j.issn.1673-5005.2023.03.006 |
Cover
| Abstract | P631.4; 最小二乘逆时偏移成像方法因计算量巨大,限制了其大规模的工业应用.基于此,建立循环对抗神经网络表征Hessian矩阵的逆,构建逆时偏移结果和反射系数之间的映射关系.通过建立的神经网络对逆时偏移成像结果进行去模糊化处理,提高成像质量,同时大幅减少计算时间.将训练好的网络应用于Marmousi模型和Sigsbee2A模型的逆时偏移结果.结果表明,本文方法在不显著增加计算量的情况下较好地提高了逆时偏移成像质量. |
|---|---|
| AbstractList | P631.4; 最小二乘逆时偏移成像方法因计算量巨大,限制了其大规模的工业应用.基于此,建立循环对抗神经网络表征Hessian矩阵的逆,构建逆时偏移结果和反射系数之间的映射关系.通过建立的神经网络对逆时偏移成像结果进行去模糊化处理,提高成像质量,同时大幅减少计算时间.将训练好的网络应用于Marmousi模型和Sigsbee2A模型的逆时偏移结果.结果表明,本文方法在不显著增加计算量的情况下较好地提高了逆时偏移成像质量. |
| Author | 黄建平 刘博文 李振春 黄韵博 |
| AuthorAffiliation | 中国石油大学(华东)地球科学与技术学院,山东青岛 266580 |
| AuthorAffiliation_xml | – name: 中国石油大学(华东)地球科学与技术学院,山东青岛 266580 |
| Author_FL | LIU Bowen HUANG Jianping LI Zhenchun HUANG Yunbo |
| Author_FL_xml | – sequence: 1 fullname: HUANG Yunbo – sequence: 2 fullname: HUANG Jianping – sequence: 3 fullname: LI Zhenchun – sequence: 4 fullname: LIU Bowen |
| Author_xml | – sequence: 1 fullname: 黄韵博 – sequence: 2 fullname: 黄建平 – sequence: 3 fullname: 李振春 – sequence: 4 fullname: 刘博文 |
| BookMark | eNo9j81Kw0AcxPdQwVr7FoKnxH92k033KMUvLHjRc9kkG2mRFFzEeosoIiKNHrQixZ5E0EMFQWiK-jLZLH0LI4owzMAcZvjNoVLUiQRCCxaYhFG21DZbUkamRV1iOACOiQETEwoBLaHyfz-LqlK2PADLxq4NtIw21TDN0p76fNa9kRqN84u-fnzQk0R_XOvJQN-fqq-XaTzMB7F6TbL0MhvfTeOzvP-ujhP9NMnPr9RJkt-O87ebeTQT8j0pqn9ZQTurK9v1daOxtbZRX24Y0gJMDcIY9zC2QwFu4INwfcp4DZjl247HeGDXALDDPd8KHBGGVGABQjiUCygstEkFLf7uHvIo5NFus9052I-Kx6Y8Crpd7wceSIFOvgEQu277 |
| ClassificationCodes | P631.4 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.3969/j.issn.1673-5005.2023.03.006 |
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| DocumentTitle_FL | Fast least-squares reverse time migration based on cycle-consistent generative adversarial network |
| EndPage | 61 |
| ExternalDocumentID | sydxxb202303006 |
| GrantInformation_xml | – fundername: (国家创新群体项目); (优秀青年科学基金); (十四五重大项目); (国家重点研发计划); (中石油重大科技项目) funderid: (国家创新群体项目); (优秀青年科学基金); (十四五重大项目); (国家重点研发计划); (中石油重大科技项目) |
| GroupedDBID | -02 2B. 4A8 92I 93N ABJIA ADMLS AKVCP ALMA_UNASSIGNED_HOLDINGS CCEZO CDRFL EBO EBU EOJEC OBODZ PSX TCJ TH9 |
| ID | FETCH-LOGICAL-s1026-399ab224fe07dc0e7c69a8091c45b9ad480025abc1d5eff6e2e0ee56ae056af43 |
| ISSN | 1673-5005 |
| IngestDate | Thu May 29 03:53:51 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Hessian矩阵 循环对抗神经网络 逆时偏移 最小二乘 |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-s1026-399ab224fe07dc0e7c69a8091c45b9ad480025abc1d5eff6e2e0ee56ae056af43 |
| PageCount | 7 |
| ParticipantIDs | wanfang_journals_sydxxb202303006 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | 中国石油大学学报(自然科学版) |
| PublicationTitle_FL | Journal of China University of Petroleum(Edition of Natural Science) |
| PublicationYear | 2023 |
| Publisher | 中国石油大学(华东)地球科学与技术学院,山东青岛 266580 |
| Publisher_xml | – name: 中国石油大学(华东)地球科学与技术学院,山东青岛 266580 |
| SSID | ssib001427406 ssib006703227 ssib001104775 ssib002040037 ssib036435281 ssib051369029 ssib008679755 ssib005319374 ssib023168192 ssj0001125114 |
| Score | 2.3920362 |
| Snippet | P631.4; 最小二乘逆时偏移成像方法因计算量巨大,限制了其大规模的工业应用.基于此,建立循环对抗神经网络表征Hessian矩阵的逆,构建逆时偏移结果和反射系数之间的映射关系.... |
| SourceID | wanfang |
| SourceType | Aggregation Database |
| StartPage | 55 |
| Title | 基于循环对抗神经网络的快速最小二乘逆时偏移成像方法 |
| URI | https://d.wanfangdata.com.cn/periodical/sydxxb202303006 |
| Volume | 47 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text issn: 1673-5005 databaseCode: ADMLS dateStart: 20151201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text omitProxy: false ssIdentifier: ssj0001125114 providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxQxdChbED2In_hND81Jts5mJpnkOLM7S1HrxRbqqczX6mkF20LtqaKIiHT1oBUp9iSCHioIQlvUP9Pdpf_C995kd4ZS1BbK8DZ5eXkfmby8afJiWeNZnMaxxuSDqUiqLvAK82ArqaY1O3JizDAl8HDy1B05OePenBWzI5V7pV1LiwvxRLJ84LmSo1gVysCueEr2EJYdEoUCgMG-8AQLw_O_bMxCwXSTBT4LXXyqEEuCkPlQ4uFPv4kl8Aw0CyVTPtMeVvnQMEQgCJhqEtBgumZKdB0BDQRdIthkfsBCTbsimkgHEADGKpua573XCdBMK4OsJCEDTYnIqmb68qkX5EcxTXSUQ1WALA2rgcPyezEHS2cirpjfIKkDZBiZbCIm4nNqCMK6SB-BBvNlCSDxQfAQmtSx61Ax5Q105RKTxBvqYdgKqjQh562G301QRFSeiwByIUgO0KJ_AIpAAO0kkMvAKVBA5AYZTqIC_VwJIKYoUATpSQ3pGz2ZJYT5ZMOdYmsZvWRH1Bcf9IM8EQUwNidMAMDeSMRGgx2gLMI3wvg0RGismFGY44C2NPM5vNukjRr-DTvCWhCRUxUHtq_D0k7kt3AZ3yk9pypsW5Sda55O1UwiTslT5smZzZorz8e_35s7Wmry5kh-Ykh-AlWaZybel0SdlmXzj9OlpRhxwH9hMv5RDg7frlijfmPq9t0iVsAkJeVchS733PKWA3RvpbU7OiunFCtJ8JWcF_WYudIrDnlzvBGuVmxZcGDpL3hxyFvUHKkH_xKnD8IYatBdBENJj1njRg03_qYEOm_YbkXt-6Wl8fQp66SJacf8fII6bY0sPzhjnShlOj1r3epubO9ur3Z_femvbnY3t3ov1_qfPvZ3Ov2fb_o76_0Pz7q_v-6tbPTWV7rfOrvbr3a33u-tPO-t_eg-6fQ_7_RevO4-7fTebfW-vz1nzTTD6fpk1dzjUp2H8EVWIQaKYggVWpntpYmdeYnUkYJAJXFFrKPUxaBVRHEC_iJrtWTGMzvLhIwyiM6iluuctyrth-3sgjVWU2nMZQyrDJ25mJwykZJHiovES5Sj0ovWmFHFnJmn5-f2DYhL_0a5bB0vXtsrVmXh0WJ2FWKPhfiaGUV_AB8n37I |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%BE%AA%E7%8E%AF%E5%AF%B9%E6%8A%97%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%9A%84%E5%BF%AB%E9%80%9F%E6%9C%80%E5%B0%8F%E4%BA%8C%E4%B9%98%E9%80%86%E6%97%B6%E5%81%8F%E7%A7%BB%E6%88%90%E5%83%8F%E6%96%B9%E6%B3%95&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%9F%B3%E6%B2%B9%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E7%89%88%EF%BC%89&rft.au=%E9%BB%84%E9%9F%B5%E5%8D%9A&rft.au=%E9%BB%84%E5%BB%BA%E5%B9%B3&rft.au=%E6%9D%8E%E6%8C%AF%E6%98%A5&rft.au=%E5%88%98%E5%8D%9A%E6%96%87&rft.date=2023-06-01&rft.pub=%E4%B8%AD%E5%9B%BD%E7%9F%B3%E6%B2%B9%E5%A4%A7%E5%AD%A6%28%E5%8D%8E%E4%B8%9C%29%E5%9C%B0%E7%90%83%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E5%B1%B1%E4%B8%9C%E9%9D%92%E5%B2%9B+266580&rft.issn=1673-5005&rft.volume=47&rft.issue=3&rft.spage=55&rft.epage=61&rft_id=info:doi/10.3969%2Fj.issn.1673-5005.2023.03.006&rft.externalDocID=sydxxb202303006 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fsydxxb%2Fsydxxb.jpg |