基于IMERG反演降水数据估算广东省降雨侵蚀力

S157; 近年来遥感反演降水产品的时空分辨率不断提高,为估算区域尺度上具有空间连续性的降雨侵蚀力提供了另一种可能.但以往研究在应用遥感降水产品估算降雨侵蚀力时多忽略了其与站点观测数据间的差异和对其纠偏的可能性.该研究以广东省 86个气象站 2001-2020年的逐时降水资料估算的降雨侵蚀力为观测值,评估两套IMERG(integrated multi-satellite retrievals for GPM)遥感降水产品-GPM_3IMERGHH(0.1°,逐30-min)和GPM_3IMERGDF(0.1°,逐日)对广东省降雨侵蚀力的估算精度并量化偏差,再结合拟合纠偏确定基于遥感反演降水数...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 39; no. 24; pp. 153 - 164
Main Authors 江源天, 王文婷, 谢云, 贺增
Format Journal Article
LanguageChinese
Published 北京师范大学文理学院地理系(珠海校区),珠海 519087%北京师范大学文理学院地理系(珠海校区),珠海 519087 01.12.2023
北京师范大学地理科学学部,北京 100875%北京师范大学地理科学学部,北京 100875
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.202309003

Cover

Abstract S157; 近年来遥感反演降水产品的时空分辨率不断提高,为估算区域尺度上具有空间连续性的降雨侵蚀力提供了另一种可能.但以往研究在应用遥感降水产品估算降雨侵蚀力时多忽略了其与站点观测数据间的差异和对其纠偏的可能性.该研究以广东省 86个气象站 2001-2020年的逐时降水资料估算的降雨侵蚀力为观测值,评估两套IMERG(integrated multi-satellite retrievals for GPM)遥感降水产品-GPM_3IMERGHH(0.1°,逐30-min)和GPM_3IMERGDF(0.1°,逐日)对广东省降雨侵蚀力的估算精度并量化偏差,再结合拟合纠偏确定基于遥感反演降水数据估算广东省降雨侵蚀力的最优方法.结果表明:这两套产品均不适宜直接估算降雨侵蚀力指标,不同时间尺度、不同方法直接应用时精度均较低,克林-古普塔效率系数(Kling-Gupta efficiency,KGE)小于等于 0.51.但多年平均和极端次事件降雨侵蚀力与对应观测值间具有强相关性(皮尔逊相关系数大于等于 0.78),具备纠偏的潜力.因此,该研究发展线性模型对IMERG估算结果进行纠偏,交叉验证结果表明纠偏后GPM_3IMERGHH估算多年平均降雨侵蚀力(R因子)的KGE可达 0.79,10年一遇EI30 的KGE可达 0.64,优于采用站点日降水估算降雨侵蚀力并插值的精度(KGE分别为 0.60和 0.59),与采用站点小时降水估算降雨侵蚀力并插值的精度相近(KGE分别为 0.77和 0.66).当前研究结果充分展示了遥感反演降水在土壤水蚀领域的应用潜力和前景.
AbstractList S157; 近年来遥感反演降水产品的时空分辨率不断提高,为估算区域尺度上具有空间连续性的降雨侵蚀力提供了另一种可能.但以往研究在应用遥感降水产品估算降雨侵蚀力时多忽略了其与站点观测数据间的差异和对其纠偏的可能性.该研究以广东省 86个气象站 2001-2020年的逐时降水资料估算的降雨侵蚀力为观测值,评估两套IMERG(integrated multi-satellite retrievals for GPM)遥感降水产品-GPM_3IMERGHH(0.1°,逐30-min)和GPM_3IMERGDF(0.1°,逐日)对广东省降雨侵蚀力的估算精度并量化偏差,再结合拟合纠偏确定基于遥感反演降水数据估算广东省降雨侵蚀力的最优方法.结果表明:这两套产品均不适宜直接估算降雨侵蚀力指标,不同时间尺度、不同方法直接应用时精度均较低,克林-古普塔效率系数(Kling-Gupta efficiency,KGE)小于等于 0.51.但多年平均和极端次事件降雨侵蚀力与对应观测值间具有强相关性(皮尔逊相关系数大于等于 0.78),具备纠偏的潜力.因此,该研究发展线性模型对IMERG估算结果进行纠偏,交叉验证结果表明纠偏后GPM_3IMERGHH估算多年平均降雨侵蚀力(R因子)的KGE可达 0.79,10年一遇EI30 的KGE可达 0.64,优于采用站点日降水估算降雨侵蚀力并插值的精度(KGE分别为 0.60和 0.59),与采用站点小时降水估算降雨侵蚀力并插值的精度相近(KGE分别为 0.77和 0.66).当前研究结果充分展示了遥感反演降水在土壤水蚀领域的应用潜力和前景.
Abstract_FL Spatiotemporal resolution of remote sensing precipitation products has been continuously improved in recent years.New possibilities can be provided to estimate the spatially continuous rainfall erosivity at the regional scale.However,previous studies have often failed to consider the differences between these products and observation data,as well as the potential for bias correction.In this study,the remote sensing precipitation products were used to estimate the rainfall erosivity in Guangdong Province,China.The precipitation data was collected hourly from 86 meteorological stations from 2001 to 2020.Two IMERG remote sensing precipitation products were selected,including the GPM IMERG Final Precipitation L3 Half Hourly 0.1 degree×0.1 degree V06(GPM_3IMERGHH,0.1°,every 30-min)and GPM IMERG Final Precipitation L3 1 day 0.1 degree×0.1 degree V06(GPM_3IMERGDF,0.1°,daily).The accuracy of two IMERG remote sensing precipitation products in estimating rainfall erosivity at semi-monthly,annual,multi-year average,and extreme event scales was then evaluated to quantify the bias.Fitting and bias correction were utilized to determine the optimal rainfall erosivity using remote sensing precipitation data.The EI30 was an indicative measure of event rainfall erosivity derived from hourly rainfall data.Fitting revisions of the EI30 were estimated from 5-minute rainfall data collected from three meteorological stations.The results showed that neither product was suitable for the direct estimation of rainfall erosivity with low accuracy at different time scales.Pearson correlation coefficients(CC)and Kling-Gupta efficiency(KGE)were less than 0.63 and 0.51 on a semi-monthly scale,indicating low estimation accuracy and small correlation.The KGE values were less than 0.5 on an annual scale,whereas,the CC values were higher than those on a semi-monthly scale,all exceeding 0.63.The KGE values were still less than 0.5 on the multi-year average and extreme event rainfall erosivity.But the CC was greater than or equal to 0.78.There was a strong correlation between the estimated and the observed values,indicating the potential for bias correction.Therefore,the linear models were used to correct the IMERG estimates.Among them,the correction models were y=2.0017x-1373 and y=1.6916x-4,respectively,for the multi-year average annual rainfall erosivity(R-factor)and 10-year storm EI30(EI30 that occurs once in 10 years).Cross-validation results showed that the corrected GPM_3IMERGHH estimates of R-factor and 10-year storm EI30 had the KGE values of 0.79 and 0.64,respectively,which were superior to the spatial interpolation using station daily rainfall data(KGE values of 0.60 and 0.59,respectively),and similar to the station hourly rainfall data(KGE values of 0.77 and 0.66,respectively).R-factor and 10-year storm EI30 were necessary to require for the areas of Guangdong Province without observation stations,in order to map the spatial distribution of these factors.Specifically,IMERG remote sensing precipitation products were used to estimate the rainfall erosivity with the bias corrections.The accuracy of the corrected estimates was superior to that using spatial interpolation with the station daily rainfall data,and similar to that with the station hourly one.The findings can effectively demonstrate the substantial potential of the remote sensing precipitation products in the field of soil water erosion,indicating the broad range of future possibilities.
Author 江源天
王文婷
贺增
谢云
AuthorAffiliation 北京师范大学文理学院地理系(珠海校区),珠海 519087%北京师范大学文理学院地理系(珠海校区),珠海 519087;北京师范大学地理科学学部,北京 100875%北京师范大学地理科学学部,北京 100875
AuthorAffiliation_xml – name: 北京师范大学文理学院地理系(珠海校区),珠海 519087%北京师范大学文理学院地理系(珠海校区),珠海 519087;北京师范大学地理科学学部,北京 100875%北京师范大学地理科学学部,北京 100875
Author_FL JIANG Yuantian
HE Zeng
XIE Yun
WANG Wenting
Author_FL_xml – sequence: 1
  fullname: JIANG Yuantian
– sequence: 2
  fullname: WANG Wenting
– sequence: 3
  fullname: XIE Yun
– sequence: 4
  fullname: HE Zeng
Author_xml – sequence: 1
  fullname: 江源天
– sequence: 2
  fullname: 王文婷
– sequence: 3
  fullname: 谢云
– sequence: 4
  fullname: 贺增
BookMark eNo9T71Kw1AYvUMFa-1TODglft_9S4KTlFoLFUF0LjdpbmmRW_Ai6qarUF0U0RZcnUoGBS1FXyZJ7VsYUZwOnHM4PyukZAYmJmQNwUUMPLHRd3vWGhcBqCN9DFwKlEEAwEqk_M8uk6q1vRAEMg-AY5lsZk_TdHrd3K3vN7KbYT67XTwM8-Qlv0vy4SSdJfPJffb-mb6N5-PLQlqMntOP16_Hi-xqtEqWtDqycfUPK-Rwu35Q23Fae41mbavlWAQqHRoJJnlM_UCImKqOBl8Bw5DxjpTFSoHIhPaolqBjrqSKuI544WBe5NGIswpZ_809VUYr0233ByfHpmhsm_NudBb-XKUcULJvY95f7Q
ClassificationCodes S157
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.202309003
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitle_FL Estimating rainfall erosivity in Guangdong Province using IMERG remote sensing precipitation products
EndPage 164
ExternalDocumentID nygcxb202324016
GrantInformation_xml – fundername: 广东省基础与应用基础研究重大项目
  funderid: (2021B0301030007)
GroupedDBID -04
2B.
4A8
5XA
5XE
92G
92I
93N
ABDBF
ABJNI
ACGFO
ACGFS
ACUHS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CW9
EOJEC
FIJ
IPNFZ
OBODZ
PSX
RIG
TCJ
TGD
TUS
U1G
U5N
ID FETCH-LOGICAL-s1026-2c5364e28955e2adf08a031b34d6602351135f72f60fe4a6ac4fc403137c72c43
ISSN 1002-6819
IngestDate Thu May 29 04:08:36 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 24
Keywords precipitation
降雨侵蚀力
侵蚀力制图
Guangdong Province
降水
Kriging interpolation
广东省
rainfall erosivity mapping
remote sensing
遥感
rainfall erosivity
克里金插值
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1026-2c5364e28955e2adf08a031b34d6602351135f72f60fe4a6ac4fc403137c72c43
PageCount 12
ParticipantIDs wanfang_journals_nygcxb202324016
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationTitle 农业工程学报
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2023
Publisher 北京师范大学文理学院地理系(珠海校区),珠海 519087%北京师范大学文理学院地理系(珠海校区),珠海 519087
北京师范大学地理科学学部,北京 100875%北京师范大学地理科学学部,北京 100875
Publisher_xml – name: 北京师范大学地理科学学部,北京 100875%北京师范大学地理科学学部,北京 100875
– name: 北京师范大学文理学院地理系(珠海校区),珠海 519087%北京师范大学文理学院地理系(珠海校区),珠海 519087
SSID ssib051370041
ssj0041925
ssib001101065
ssib023167668
Score 2.448531
Snippet S157; 近年来遥感反演降水产品的时空分辨率不断提高,为估算区域尺度上具有空间连续性的降雨侵蚀力提供了另一种可能.但以往研究在应用遥感降水产品估算降雨侵蚀力时多忽略...
SourceID wanfang
SourceType Aggregation Database
StartPage 153
Title 基于IMERG反演降水数据估算广东省降雨侵蚀力
URI https://d.wanfangdata.com.cn/periodical/nygcxb202324016
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3LbtQw0CpbCcEB8RRvVQKf0JbEsR1bnJxtloJUDqiVequSbLKIwyL1IUFPcEUqXEAIWokrp6oHkKCq4Gd2t_QvmPF6N2kL4nHjYs3OTMbzSDxjr-MQcl1njLUCruthJmGC0kqSug58WYfS1s9S3ZJJiv_oztyT03P87ryYH6s9rOxaWllOJ7PVn75X8i9RBRzEFd-S_YvIjoQCAmCIL7QQYWj_KMY0FlQ3aWRozLFV8Z2Z-P5tRKsmVVM0ljRqUM1prKnWQ4xHI46AFggDAHgTWxkNiwnxpw5RTqRp1LQkRXUDSdAqvyIQgIgaZXliGgkaA6fBHRSohgFqtQC2SGlFDWQa2wv0KGy_iqoIMQZUklY3A6ThbWHV99FmBEC27cRwanTJEoIfrBToBq63ZhgwIyxZFJppmHOb9vdRLA6vYVTH1VURFhzYYWKNaVhP2YtMwxoDNiiUBCQVDBUM91nlFAvRAnBHSbJuRc0E-mgQDMcT0iigUQRTAmtjkxobvMi6DwD4aXynEijDNDw-hzlvQDHt4QqQ-I-1r6RSzLVSuYTocu3g4Co3pjBeyZz-4MxoV4T5g6PtD-d3HQqb4LGLyVEXk3gLeLgoX5Y1o82mnSft7HGKHFC9-vIIGWdQAXg1Mm6iqahZTh58XB8ZZTeGZ0TIcjIu_AA_BTHaQIbbJ4TdS-GUOEquDVW8-WsF7cuBnSLptCt17OxJcsJNQCfMYDQ5RcZWH5wmx0170R3Ck58ht3rvt7vbL-xY0nu51t95tfd2rb_1sf96q7-22d3Z2t180_vyrft5Y3fjGZD21j90v376_u5p7_n6WTLXjGcb03X3kZX6EswtZJ1lIpA8Z0oLkbOkVXgqgUSfBrwlJR6G5fuBKEJWSK_IeSKTjBcZxxNfwyxkGQ_OkVrnUSc_TyZSX2ZQH4RBoSSX-CWKTOUtkekg45ql3gUy4UxfcIPo0sKB4Fz8Pcslcqx84C-T2vLiSn4FJgbL6VUX0R-ZQrxt
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EIMERG%E5%8F%8D%E6%BC%94%E9%99%8D%E6%B0%B4%E6%95%B0%E6%8D%AE%E4%BC%B0%E7%AE%97%E5%B9%BF%E4%B8%9C%E7%9C%81%E9%99%8D%E9%9B%A8%E4%BE%B5%E8%9A%80%E5%8A%9B&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E6%B1%9F%E6%BA%90%E5%A4%A9&rft.au=%E7%8E%8B%E6%96%87%E5%A9%B7&rft.au=%E8%B0%A2%E4%BA%91&rft.au=%E8%B4%BA%E5%A2%9E&rft.date=2023-12-01&rft.pub=%E5%8C%97%E4%BA%AC%E5%B8%88%E8%8C%83%E5%A4%A7%E5%AD%A6%E6%96%87%E7%90%86%E5%AD%A6%E9%99%A2%E5%9C%B0%E7%90%86%E7%B3%BB%28%E7%8F%A0%E6%B5%B7%E6%A0%A1%E5%8C%BA%29%2C%E7%8F%A0%E6%B5%B7+519087%25%E5%8C%97%E4%BA%AC%E5%B8%88%E8%8C%83%E5%A4%A7%E5%AD%A6%E6%96%87%E7%90%86%E5%AD%A6%E9%99%A2%E5%9C%B0%E7%90%86%E7%B3%BB%28%E7%8F%A0%E6%B5%B7%E6%A0%A1%E5%8C%BA%29%2C%E7%8F%A0%E6%B5%B7+519087&rft.issn=1002-6819&rft.volume=39&rft.issue=24&rft.spage=153&rft.epage=164&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.202309003&rft.externalDocID=nygcxb202324016
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg