基于改进A与DWA算法的井下搬运机器人自主行走路径规划

TD525; 针对井下搬运过程用工多且效率低等问题以及转运环节多、转运操作难、人工转运慢等困境,以搬运机器人为研究对象,通过仿真与试验进行井下巷道路径规划方法研究.首先,对井下转运工况进行特定的需求分析,确定井下"多转运点巷道"与"最后 1km直达运输"等典型搬运场景,并分别建立自主行走策略,提升井下搬运机器人自主行走路径规划的适用性与合理性;其次,设计路径规划系统方案,对比分析常规路径规划算法的性能,分别选取A*算法与DWA算法作为井下搬运机器人的全局路径规划与局部路径规划的基本算法;然后,针对常规A*算法搜索效率低与规划路径平滑性不足的问题,依次使用...

Full description

Saved in:
Bibliographic Details
Published in煤炭科学技术 Vol. 52; no. 11; pp. 197 - 213
Main Authors 张可琨, 鲍久圣, 艾俊伟, 袁晓明, 阴妍, 王茂森, 葛世荣
Format Journal Article
LanguageChinese
Published 中国矿业大学机电工程学院,江苏 徐州 221116%中国煤炭科工集团太原研究院有限公司,山西 太原 030006%中国矿业大学(北京)机械与电气工程学院,北京 100083 01.11.2024
Subjects
Online AccessGet full text
ISSN0253-2336
DOI10.12438/cst.2024-0747

Cover

Abstract TD525; 针对井下搬运过程用工多且效率低等问题以及转运环节多、转运操作难、人工转运慢等困境,以搬运机器人为研究对象,通过仿真与试验进行井下巷道路径规划方法研究.首先,对井下转运工况进行特定的需求分析,确定井下"多转运点巷道"与"最后 1km直达运输"等典型搬运场景,并分别建立自主行走策略,提升井下搬运机器人自主行走路径规划的适用性与合理性;其次,设计路径规划系统方案,对比分析常规路径规划算法的性能,分别选取A*算法与DWA算法作为井下搬运机器人的全局路径规划与局部路径规划的基本算法;然后,针对常规A*算法搜索效率低与规划路径平滑性不足的问题,依次使用指数优化法与二次B样条曲线法进行改进,同时对比分析改进A*算法的性能,仿真结果发现:改进A*算法在"最后 1km直达运输"与"多转运点自主行走"等典型井下搬运场景的路径规划时间分别缩短了 24.62%与 22.02%,路径规划效率获得了提升,且生成路径的平滑性较好;接着,针对传统DWA算法存在运行时间与路径长度欠优的问题,统筹井下巷道速度限制、移动底盘驱动电机限制与搬运机器人制动距离限制等约束性要素构建预测路径评价函数,并衡量安全性与高效性引入障碍物评价子函数改进DWA算法,仿真结果发现:基于改进DWA算法的规划路径长度与自主行走时间分别缩短了 31.27%与 42.33%,有效提升了搬运机器人动态避障能力及路径规划性能;最后,搭建试验巷道场景与搬运机器人模型开展井下搬运机器人路径规划试验,试验结果表明:改进A*-DWA融合算法在多转运点巷道自主行走A→B、A→C以及最后 1km直达运输等试验场景的路径规划效率分别提升了 21.90%、18.57%、14.67%,行驶过程实现实时有效动态避障,规划路径安全高效且具有平滑性,能够符合井下"减人、提效、增安"的目标导向以及满足搬运机器人自主行走路径规划需求.
AbstractList TD525; 针对井下搬运过程用工多且效率低等问题以及转运环节多、转运操作难、人工转运慢等困境,以搬运机器人为研究对象,通过仿真与试验进行井下巷道路径规划方法研究.首先,对井下转运工况进行特定的需求分析,确定井下"多转运点巷道"与"最后 1km直达运输"等典型搬运场景,并分别建立自主行走策略,提升井下搬运机器人自主行走路径规划的适用性与合理性;其次,设计路径规划系统方案,对比分析常规路径规划算法的性能,分别选取A*算法与DWA算法作为井下搬运机器人的全局路径规划与局部路径规划的基本算法;然后,针对常规A*算法搜索效率低与规划路径平滑性不足的问题,依次使用指数优化法与二次B样条曲线法进行改进,同时对比分析改进A*算法的性能,仿真结果发现:改进A*算法在"最后 1km直达运输"与"多转运点自主行走"等典型井下搬运场景的路径规划时间分别缩短了 24.62%与 22.02%,路径规划效率获得了提升,且生成路径的平滑性较好;接着,针对传统DWA算法存在运行时间与路径长度欠优的问题,统筹井下巷道速度限制、移动底盘驱动电机限制与搬运机器人制动距离限制等约束性要素构建预测路径评价函数,并衡量安全性与高效性引入障碍物评价子函数改进DWA算法,仿真结果发现:基于改进DWA算法的规划路径长度与自主行走时间分别缩短了 31.27%与 42.33%,有效提升了搬运机器人动态避障能力及路径规划性能;最后,搭建试验巷道场景与搬运机器人模型开展井下搬运机器人路径规划试验,试验结果表明:改进A*-DWA融合算法在多转运点巷道自主行走A→B、A→C以及最后 1km直达运输等试验场景的路径规划效率分别提升了 21.90%、18.57%、14.67%,行驶过程实现实时有效动态避障,规划路径安全高效且具有平滑性,能够符合井下"减人、提效、增安"的目标导向以及满足搬运机器人自主行走路径规划需求.
Abstract_FL In view of the problems of many labors and low efficiency in the underground handling process,as well as the difficulties of many transport links,difficult transport operation and slow manual transport,the handling robot is taken as the research object,and the path planning method of underground roadway is studied through simulation and experiment.Firstly,the specific demand analysis of the underground transport conditions is carried out to determine the typical transportation scenarios such as"multi-transport point roadway"and"last 1km direct transport",and the autonomous walking strategies are established respectively to improve the applicability and ration-ality of the autonomous walking path planning of the underground handling robot.Secondly,the path planning system scheme is designed,and the performance of the conventional path planning algorithms is compared and analyzed.The A*algorithm and the DWA algorithm are selected as the basic algorithms for global path planning and local path planning of the underground handling robot.Then,in order to solve the problem of low search efficiency and insufficient smoothness of the planned path of the conventional A*algorithm,the exponen-tial optimization method and the quadratic B-spline curve method are used to improve the algorithm in turn,and the performance of the improved A*algorithm is compared and analyzed.The simulation results show that the improved A*algorithm shortens the path planning time of typical underground handling scenarios such as"the last 1 km direct transport"and"multi-transport point autonomous walking"by 24.62%and 22.02%respectively,and the path planning efficiency is improved,and the smoothness of the generated path is better.Besides,aiming at the problem that the traditional DWA algorithm has poor running time and path length,the predictive path evaluation function is constructed by coordinating the constraints of underground roadway speed limit,mobile chassis drive motor limit and handling robot brak-ing distance limit,and the obstacle evaluation sub-function is introduced to improve the DWA algorithm by measuring safety and effi-ciency.The simulation results show that the planned path length and autonomous walking time based on the improved DWA algorithm are shortened by 31.27%and 42.33%respectively,which effectively improves the dynamic obstacle avoidance ability and path planning per-formance of the handling robot.Finally,the experimental roadway scenario and the handling robot model are built to carry out the path planning experiment of the underground handling robot.The experimental results show that the path planning efficiency of the improved A*-DWA fusion algorithm in the multi-transport point roadway autonomous walking A→B,A→C,the last 1 km direct transport and oth-er scenarios is improved by 21.90%,18.57%and 14.67%,respectively.The driving process realizes real-time and effective dynamic obstacle avoidance,and the planned path is safe,efficient and smooth,which can conform to the goal orientation of"reducing people,im-proving efficiency and increasing safety"and meet the needs of autonomous walking path planning of handling robots.
Author 艾俊伟
袁晓明
葛世荣
王茂森
张可琨
阴妍
鲍久圣
AuthorAffiliation 中国矿业大学机电工程学院,江苏 徐州 221116%中国煤炭科工集团太原研究院有限公司,山西 太原 030006%中国矿业大学(北京)机械与电气工程学院,北京 100083
AuthorAffiliation_xml – name: 中国矿业大学机电工程学院,江苏 徐州 221116%中国煤炭科工集团太原研究院有限公司,山西 太原 030006%中国矿业大学(北京)机械与电气工程学院,北京 100083
Author_FL YIN Yan
BAO Jiusheng
ZHANG Kekun
AI Junwei
GE Shirong
WANG Maosen
YUAN Xiaoming
Author_FL_xml – sequence: 1
  fullname: ZHANG Kekun
– sequence: 2
  fullname: BAO Jiusheng
– sequence: 3
  fullname: AI Junwei
– sequence: 4
  fullname: YUAN Xiaoming
– sequence: 5
  fullname: YIN Yan
– sequence: 6
  fullname: WANG Maosen
– sequence: 7
  fullname: GE Shirong
Author_xml – sequence: 1
  fullname: 张可琨
– sequence: 2
  fullname: 鲍久圣
– sequence: 3
  fullname: 艾俊伟
– sequence: 4
  fullname: 袁晓明
– sequence: 5
  fullname: 阴妍
– sequence: 6
  fullname: 王茂森
– sequence: 7
  fullname: 葛世荣
BookMark eNotj8tKw0AUQGdRwVq79Rdcpc6dmUySZamvQsGN4rJMJrli1RRMRT-goKCUIhbxAeJKEVFBxBrB_kySzmeo6OrszuFMkULUjkJCZoBWgAnuzum4U2GUCYs6wimQImU2txjncpKU43jTpzZwRwCVRVLPbpI06eVnH2Z0VU2Hvfn16vjpPH8djC-7aTJIh8d5_9GM-vl1kl3cp0liDh_S4ae5PTFvL-b9OfvqmrtudnQ6TSZQbcdh-Z8lsra4sFpbthorS_VatWHFQJm0wNYCUSqq0UP0tKsgRI3CVygx8FzBJLqOLUA4Sjg2giekdgXyACAQvuYlMvvn3VcRqmij2Wrv7UY_xeZOZ-ugFf-OA1CQ_Bte8WmW
ClassificationCodes TD525
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.12438/cst.2024-0747
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Autonomous walking path planning of underground handling robot based on improved A and DWA algorithm
EndPage 213
ExternalDocumentID mtkxjs202411016
GrantInformation_xml – fundername: (煤矿采掘机械装备国家工程实验室开放课题资助项目); (江苏省研究生科研与实践创新计划资助项目); (中国矿业大学未来科学家计划资助项目)
  funderid: (煤矿采掘机械装备国家工程实验室开放课题资助项目); (江苏省研究生科研与实践创新计划资助项目); (中国矿业大学未来科学家计划资助项目)
GroupedDBID -02
2B.
4A8
5XA
5XC
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CDRFL
CW9
GROUPED_DOAJ
PSX
TCJ
TGT
U1G
U5L
ID FETCH-LOGICAL-s1026-15c4ff6a0cf9ff9c8a1efcf4baf6fd98426f8754147a475f1946c84f3d11d4bc3
ISSN 0253-2336
IngestDate Thu May 29 04:07:34 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 11
Keywords 搬运机器人
井下自主行走
improvement of DWA algorithm
A算法改进
DWA算法改进
path planning
improvement of Aalgorithm
underground autonomous walking
路径规划
handling robot
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1026-15c4ff6a0cf9ff9c8a1efcf4baf6fd98426f8754147a475f1946c84f3d11d4bc3
PageCount 17
ParticipantIDs wanfang_journals_mtkxjs202411016
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationTitle 煤炭科学技术
PublicationTitle_FL Coal Science and Technology
PublicationYear 2024
Publisher 中国矿业大学机电工程学院,江苏 徐州 221116%中国煤炭科工集团太原研究院有限公司,山西 太原 030006%中国矿业大学(北京)机械与电气工程学院,北京 100083
Publisher_xml – name: 中国矿业大学机电工程学院,江苏 徐州 221116%中国煤炭科工集团太原研究院有限公司,山西 太原 030006%中国矿业大学(北京)机械与电气工程学院,北京 100083
SSID ssib051374106
ssj0037581
ssib001105251
ssib012291398
ssib036204842
Score 2.4014637
Snippet TD525; 针对井下搬运过程用工多且效率低等问题以及转运环节多、转运操作难、人工转运慢等困境,以搬运机器人为研究对象,通过仿真与试验进行井下巷道路径规划方法研究.首先,对...
SourceID wanfang
SourceType Aggregation Database
StartPage 197
Title 基于改进A与DWA算法的井下搬运机器人自主行走路径规划
URI https://d.wanfangdata.com.cn/periodical/mtkxjs202411016
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 0253-2336
  databaseCode: DOA
  dateStart: 20210101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0037581
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxNBFF5q-6IP4hXv9MF5CtHM7MzuzONuuksV9KnFvpXNJqsoRjApSJ8LCkopYhEvID4pIiqIWCPYP5Ok-Rmec3aSbGvVKpTl5OyZc_t257Kdi-Ocd43Ubj3FZb8NUZbC9_CfhG657qs6991UJbRP95Wr3uy8vLygFiam4sKspaV27UK6vOu6kv9BFXiAK66S_QdkR0qBATTgC1dAGK57wphFipmYhQGLJF51xCKPGaANizQLY2bsPQ33Zq4B7bMgYsZHudBlRiHHQElpVSAnlw9JV4UF1aGuCnGqZA8MGxZoWwo5UASUD82FIXICznReXLGwQgTIxFg8jMgoyPhEKKY1yw-sG3aW0TetWCCJECyYIf_BYY7y8DPw0CUd4HyN3LdgNFOZjACjQrpjMutTQHosYlgomJ4hpw0aw8CgkDsWgbgMeosiMdpCogp5L4oEoIWTC4YZlwhMefGbipB2ceHwLbCZwqjAaMhCCg_xjO0tQ4mG-CHmYsAWA5-gJp8xrYRlkCM3EjaEk4A3iSDnqD8iGR2XLA6mYlWYqCRgqI4fWtTu3v0BDuuCQWHt2VJg2UZAocADaggGQMWQngByW3AzDw4SnnNyz9Bo1aIILgmiIRT4w9QDnYey3UwJGhao7H8byl8TLTTpqtLrQo85eCFMAQAPXcbn2r5hBUg85Bu5Z2x2GipxGrcU2mmh3LJw8318hp0KJYqVJy90EXg-H932NkW-EvuXjoyQdG5B2sL53vCA4jkX4y7baCLt7fatezdbKMHxM9w-ZwpqW1EpfFqiYRHH0ypH7TgXAjcDHrW7Lp5JoeVomKO4C-MMnH2R92hdX9Fhz6NA7ea36OPFbR7SysdmljSvFzrpc4ecg3Z0PR3kVeVhZ2L5xhHnQGHP1aPOpd6rTrez2n_ybbD5IuhurEK1uPXhaf_z-tbzlW5nvbvxsL_2frC51n_Z6T172-10BvffdTe-D14_Gnz5NPj6sfdjZfBmpffg8TFnPo7mqrNle55MuQXDKK_MVSqzzEsqaWayzKQ64Y0szWQtybysbiADXqZ9Jbn0E-mrjBvppVpmbp3zuqyl7nFnsnmn2TjhTCeJqtUy43nay6ALlJq6TmXFNJSUvqfc5KQzbROxaNuL1uIOrE79XeS0s39cO51xJtt3lxpnYQzUrp0jgH8CHCX1vw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%94%B9%E8%BF%9BA%E4%B8%8EDWA%E7%AE%97%E6%B3%95%E7%9A%84%E4%BA%95%E4%B8%8B%E6%90%AC%E8%BF%90%E6%9C%BA%E5%99%A8%E4%BA%BA%E8%87%AA%E4%B8%BB%E8%A1%8C%E8%B5%B0%E8%B7%AF%E5%BE%84%E8%A7%84%E5%88%92&rft.jtitle=%E7%85%A4%E7%82%AD%E7%A7%91%E5%AD%A6%E6%8A%80%E6%9C%AF&rft.au=%E5%BC%A0%E5%8F%AF%E7%90%A8&rft.au=%E9%B2%8D%E4%B9%85%E5%9C%A3&rft.au=%E8%89%BE%E4%BF%8A%E4%BC%9F&rft.au=%E8%A2%81%E6%99%93%E6%98%8E&rft.date=2024-11-01&rft.pub=%E4%B8%AD%E5%9B%BD%E7%9F%BF%E4%B8%9A%E5%A4%A7%E5%AD%A6%E6%9C%BA%E7%94%B5%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B1%9F%E8%8B%8F+%E5%BE%90%E5%B7%9E+221116%25%E4%B8%AD%E5%9B%BD%E7%85%A4%E7%82%AD%E7%A7%91%E5%B7%A5%E9%9B%86%E5%9B%A2%E5%A4%AA%E5%8E%9F%E7%A0%94%E7%A9%B6%E9%99%A2%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%2C%E5%B1%B1%E8%A5%BF+%E5%A4%AA%E5%8E%9F+030006%25%E4%B8%AD%E5%9B%BD%E7%9F%BF%E4%B8%9A%E5%A4%A7%E5%AD%A6%28%E5%8C%97%E4%BA%AC%29%E6%9C%BA%E6%A2%B0%E4%B8%8E%E7%94%B5%E6%B0%94%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%8C%97%E4%BA%AC+100083&rft.issn=0253-2336&rft.volume=52&rft.issue=11&rft.spage=197&rft.epage=213&rft_id=info:doi/10.12438%2Fcst.2024-0747&rft.externalDocID=mtkxjs202411016
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fmtkxjs%2Fmtkxjs.jpg