基于无人机多光谱影像的水稻生物量估测

S252; 水稻是中国主要粮食作物之一,对水稻生物量进行及时、准确、快速、高效地监测具有重要作用.该研究以无人机多光谱影像作为数据源,提取10种多光谱植被指数与水稻生物量进行相关性分析,结果表明全生育期的生物量与植被指数的相关性比单期更高,在植被覆盖度接近100%并趋于稳定后,将全生育期数据划分为营养生长期和生殖生长期,也能提高生物量与植被指数的相关性.全生育期10种植被指数全为显著相关,其中差值植被指数(difference vegetation index,DVI)相关性最高,为0.689;营养生长期10种植被指数均为显著相关,其中红边波段比值植被指数(red-edge ratio veg...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 40; no. 17; pp. 161 - 170
Main Authors 王帝, 孙榕, 苏勇, 杨博
Format Journal Article
LanguageChinese
Published 西南石油大学土木工程与测绘学院,成都 610500 01.09.2024
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.202401024

Cover

Abstract S252; 水稻是中国主要粮食作物之一,对水稻生物量进行及时、准确、快速、高效地监测具有重要作用.该研究以无人机多光谱影像作为数据源,提取10种多光谱植被指数与水稻生物量进行相关性分析,结果表明全生育期的生物量与植被指数的相关性比单期更高,在植被覆盖度接近100%并趋于稳定后,将全生育期数据划分为营养生长期和生殖生长期,也能提高生物量与植被指数的相关性.全生育期10种植被指数全为显著相关,其中差值植被指数(difference vegetation index,DVI)相关性最高,为0.689;营养生长期10种植被指数均为显著相关,其中红边波段比值植被指数(red-edge ratio vegetation index,RE-RVI)相关性最高,为0.894;生殖生长期植被指数除DVI外均为显著相关,其中稻穗部分红边波段归一化植被指数(red-edge normalized difference spectral reflectance index,RE-NDVI)相关性最高,为-0.794,茎秆叶部分RE-RVI相关性最高,为0.629.分别利用营养生长期与生殖生长期的植被指数构建生物量估测模型,营养生长期主要模型为二次回归模型和指数模型,较优的多光谱指数为RE-RVI,验证精度决定系数R2为0.90,均方根误差RMSE为119.36g/m2;生殖生长期稻穗主要模型为二次回归模型,较优的多光谱指数为比值植被指数(ratio vegetation index,RVI),验证精度决定系数R2为0.78,均方根误差RMSE为124.98 g/m2.总体上看,利用植被覆盖度接近100%时来划分全生育期数据构建生物量估测模型能够提升模型精度,而生殖生长期将稻穗与茎秆叶分别构建模型也能提高生物量的估测精度.研究结果可为无人机多光谱影像技术对全生育期水稻生物量监测提供理论依据和技术支持.
AbstractList S252; 水稻是中国主要粮食作物之一,对水稻生物量进行及时、准确、快速、高效地监测具有重要作用.该研究以无人机多光谱影像作为数据源,提取10种多光谱植被指数与水稻生物量进行相关性分析,结果表明全生育期的生物量与植被指数的相关性比单期更高,在植被覆盖度接近100%并趋于稳定后,将全生育期数据划分为营养生长期和生殖生长期,也能提高生物量与植被指数的相关性.全生育期10种植被指数全为显著相关,其中差值植被指数(difference vegetation index,DVI)相关性最高,为0.689;营养生长期10种植被指数均为显著相关,其中红边波段比值植被指数(red-edge ratio vegetation index,RE-RVI)相关性最高,为0.894;生殖生长期植被指数除DVI外均为显著相关,其中稻穗部分红边波段归一化植被指数(red-edge normalized difference spectral reflectance index,RE-NDVI)相关性最高,为-0.794,茎秆叶部分RE-RVI相关性最高,为0.629.分别利用营养生长期与生殖生长期的植被指数构建生物量估测模型,营养生长期主要模型为二次回归模型和指数模型,较优的多光谱指数为RE-RVI,验证精度决定系数R2为0.90,均方根误差RMSE为119.36g/m2;生殖生长期稻穗主要模型为二次回归模型,较优的多光谱指数为比值植被指数(ratio vegetation index,RVI),验证精度决定系数R2为0.78,均方根误差RMSE为124.98 g/m2.总体上看,利用植被覆盖度接近100%时来划分全生育期数据构建生物量估测模型能够提升模型精度,而生殖生长期将稻穗与茎秆叶分别构建模型也能提高生物量的估测精度.研究结果可为无人机多光谱影像技术对全生育期水稻生物量监测提供理论依据和技术支持.
Abstract_FL Rice is one of the major food crops in China.It is important to timely,accurately,efficiently,and rapidly monitor the rice biomass.In this study,ten multispectral vegetation indices were extracted from Unmanned Aerial Vehicles(UAV)multispectral images.The data source was obtained for the correlation analysis with rice biomass.The results showed that the correlation between biomass and vegetation index was higher for the full reproductive period than for a single period.The correlation between biomass and vegetation index was also improved to divide the data for the full reproductive period into a nutritive and a reproductive period,according to the vegetation cover up to 100%.All ten vegetation indices were significantly correlated throughout the reproductive and nutrient growth period,with the highest DVI and RE-RVI correlation of 0.689 and 0.894,respectively;Except the DVI,the vegetation indices were significantly correlated in the productive growth period,with the highest RE-NDVI correlation of-0.794 for the rice spike portion and 0.629 for the stem and leaf portion.The biomass estimation models were then constructed using vegetation indices for the nutritive and reproductive growth periods.Quadratic regression and exponential models were also obtained in the nutritive growth period.The optimal multispectral index was achieved in the RERVI,with the validation accuracies of R2=0.90,and RMSE=119.36 g/m2;In the reproductive growth period,the rice spike was a quadratic regression model with an optimal multispectral index of RVI and validation accuracies of R2=0.78 and RMSE=124.98 g/m2,respectively.Overall,the accuracy of the model was improved in the biomass estimation with the full-birth period data using the vegetation cover close to 100%.The accuracy of biomass estimation was also improved to separate the rice spike from the stalk and leaf during the reproductive growth period.Relatively less saturation was suffered in the early growth period of rice,whereas,the accuracy was slightly higher than that in the late growth period;Moreover,the experimental data significantly improved the estimation precision and accuracy of the model.The rice biomass was segmented for modeling and accuracy validation during the whole life cycle,in terms of plant nutritional and reproductive growth.The finding can also provide effective information and references for field crop growth monitoring and decision-making on farmland production.
Author 苏勇
王帝
杨博
孙榕
AuthorAffiliation 西南石油大学土木工程与测绘学院,成都 610500
AuthorAffiliation_xml – name: 西南石油大学土木工程与测绘学院,成都 610500
Author_FL SU Yong
SUN Rong
YANG Bo
WANG Di
Author_FL_xml – sequence: 1
  fullname: WANG Di
– sequence: 2
  fullname: SUN Rong
– sequence: 3
  fullname: SU Yong
– sequence: 4
  fullname: YANG Bo
Author_xml – sequence: 1
  fullname: 王帝
– sequence: 2
  fullname: 孙榕
– sequence: 3
  fullname: 苏勇
– sequence: 4
  fullname: 杨博
BookMark eNo9j7tKA0EYhaeIYIx5CgurXf9_dnbWKSV4g4CN1mFmdyYkyAQcRK1VJAimEYQgxMJCuw1os-rb7EXfwhXF5hw4xfdxlkjDjqwmZAXBRxRRuDb0B85ZHwGox9dR-BQoA6yjQZr_6yJpOzdQEGIQATBsEl7Msjy7Ke8e8iwr77PicVpcjj_TefExL84n1fSiTF-qp7fqdlaNn7-uJvl7Wr5eL5MFIw-dbv91ixxsbe53drzu3vZuZ6PruVrNPWRGITeaaspExEyiEyojFepES2oUqCBAzXgshAzBmCSmwEAklIY65lKroEVWf7kn0hpp-73h6PjI1saePevHp-rnJUaAPPgGhPBgmA
ClassificationCodes S252
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.202401024
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitle_FL Rice biomass estimation based on multispectral imagery from unmanned aerial vehicles
EndPage 170
ExternalDocumentID nygcxb202417016
GrantInformation_xml – fundername: (国家自然科学基金); (湖北省珞珈实验室开放基金项目); (四川省自然科学基金项目)
  funderid: (国家自然科学基金); (湖北省珞珈实验室开放基金项目); (四川省自然科学基金项目)
GroupedDBID -04
2B.
4A8
5XA
5XE
92G
92I
93N
ABDBF
ABJNI
ACGFO
ACGFS
ACUHS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CW9
EOJEC
FIJ
IPNFZ
OBODZ
PSX
RIG
TCJ
TGD
TUS
U1G
U5N
ID FETCH-LOGICAL-s1026-14fb16fe2e24974fded2a7b5edea2fb0b331e46c99a50ffdc20409d225ec6aeb3
ISSN 1002-6819
IngestDate Thu May 29 04:08:37 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 17
Keywords vegetation index
biomass
生物量
无人机
植被指数
水稻
多光谱
UAV
rice
multispectral
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1026-14fb16fe2e24974fded2a7b5edea2fb0b331e46c99a50ffdc20409d225ec6aeb3
PageCount 10
ParticipantIDs wanfang_journals_nygcxb202417016
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationTitle 农业工程学报
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2024
Publisher 西南石油大学土木工程与测绘学院,成都 610500
Publisher_xml – name: 西南石油大学土木工程与测绘学院,成都 610500
SSID ssib051370041
ssj0041925
ssib001101065
ssib023167668
Score 2.4778004
Snippet S252; 水稻是中国主要粮食作物之一,对水稻生物量进行及时、准确、快速、高效地监测具有重要作用.该研究以无人机多光谱影像作为数据源,提取10种多光谱植被指数与水稻生物量进...
SourceID wanfang
SourceType Aggregation Database
StartPage 161
Title 基于无人机多光谱影像的水稻生物量估测
URI https://d.wanfangdata.com.cn/periodical/nygcxb202417016
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxQxNPQDRA_iJ35T0Jxk6kwmySTHTHeWIuiphd7KfKWeVmi3oL2qSBHsRRCKUA8e9NaCXlb9N91d_Re-l013h6r4AcMQ8r7fm8xLhpcMIbdkDmkbMnmQhIUMOM9tAFmxCizLOW58rAtX7X7vvlxc5ndXxMrUdLNqabNbzJdbv9xX8j9RhT6IK-6S_YfIjplCB7QhvnCHCMP9r2JMM0F1m6aGZhzvKqOZpDqhJvQ9CIKeBdcQ1HCqXUPBpWmmaBrSNMKetOUbKqaqTbMEMRVHcsTh2GMAP3UgjnKhAUwM8NFUJY4KhC4gPlIBq7Q593XMnTKIprwmKbAVnrlKnZItaiRyUAZAR0-Ek5Z5FKRuTSCORmukAUrdoHE8UTHhGskEAngtlIkQIDbNzx-Mj-u7Rg8sMgIt0_YReuK8AK6PnamMptr71yQNGwRai55yZo-kHTfY-WIUOecyBIGXtWrw0WidYTAenF_A-tA5PYaw3YapqQjDRnbB9COVzxE-_fCwOcySRjKJRsfU-3lJNPrBys8pTyfC5TwUMT8WMY_OwgMD-STTj-svO4_XykcFYuBx_HKazLJESjZDZk3aStuT-XSEnwzGL3yGxybIyfpURDH-HWFcU4UVBcKVF3glTpCbRyre-b2Cbr9cx-adtcbUbukMOe3XZHNmNMDOkqmtB-fIKbO27s-lqc8T2d_rHfZeDl6_Pez1Bm96_Xe7_Wfb3_YP-l8P-k92hrtPB_sfh-8_D1_tDbc_fH--c_hlf_DpxQWy3M6WFhYD_8uRYAM0kUHEbRFJW7OacVhp26quWJ4Uoq7qnNkiLOI4qrkstc5FaG1VMkiCuoKkWJcyr4v4IpnpPOzUl8icxA-E2p3QKHgsbS5LGeeJVVZUFbPlZTLnrV71r5SN1WNxufJnlKvk5GRUXCMz3fXN-jpMk7vFDR_MH2eLjKo
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%97%A0%E4%BA%BA%E6%9C%BA%E5%A4%9A%E5%85%89%E8%B0%B1%E5%BD%B1%E5%83%8F%E7%9A%84%E6%B0%B4%E7%A8%BB%E7%94%9F%E7%89%A9%E9%87%8F%E4%BC%B0%E6%B5%8B&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E7%8E%8B%E5%B8%9D&rft.au=%E5%AD%99%E6%A6%95&rft.au=%E8%8B%8F%E5%8B%87&rft.au=%E6%9D%A8%E5%8D%9A&rft.date=2024-09-01&rft.pub=%E8%A5%BF%E5%8D%97%E7%9F%B3%E6%B2%B9%E5%A4%A7%E5%AD%A6%E5%9C%9F%E6%9C%A8%E5%B7%A5%E7%A8%8B%E4%B8%8E%E6%B5%8B%E7%BB%98%E5%AD%A6%E9%99%A2%2C%E6%88%90%E9%83%BD+610500&rft.issn=1002-6819&rft.volume=40&rft.issue=17&rft.spage=161&rft.epage=170&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.202401024&rft.externalDocID=nygcxb202417016
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg