采用HHT算法与卷积神经网络诊断轴承复合故障

TH165%TH17; 针对农业机械装备中滚动轴承复合故障特征提取与智能诊断问题,该文提出了一种将希尔伯特-黄变换的改进算法(improved hilbert-huang transform,IHHT)与卷积神经网络(convolution neural network,CNN)相结合的诊断方法.首先,通过多种群差分进化改进的集合经验模式分解(multiple population differential evolution-ensemble empirical mode decomposition,MPDE-EEMD)和敏感固有模态函数筛选方法来改进HHT,提取出故障信号时频特征.然后,在...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 36; no. 4; pp. 34 - 43
Main Authors 施杰, 伍星, 刘韬
Format Journal Article
LanguageChinese
Published 昆明理工大学机电工程学院,昆明 650500 15.02.2020
云南农业大学机电工程学院,昆明 650201%昆明理工大学机电工程学院,昆明,650500
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2020.04.005

Cover

Abstract TH165%TH17; 针对农业机械装备中滚动轴承复合故障特征提取与智能诊断问题,该文提出了一种将希尔伯特-黄变换的改进算法(improved hilbert-huang transform,IHHT)与卷积神经网络(convolution neural network,CNN)相结合的诊断方法.首先,通过多种群差分进化改进的集合经验模式分解(multiple population differential evolution-ensemble empirical mode decomposition,MPDE-EEMD)和敏感固有模态函数筛选方法来改进HHT,提取出故障信号时频特征.然后,在AlexNet网络模型基础上遍历所有可能的CNN模型组合,构建出适应于滚动轴承故障诊断的CNN网络模型.再将训练集生成的IHHT时频图输入CNN中进行学习,不断更新网络参数;并将该模型应用于测试集,输出故障识别结果.最后,通过滚动轴承单一故障和复合故障2种试验,将所提出的IHHT+CNN方法分别与传统的BP神经网络、DWT+CNN和STFT+CNN方法进行比较.研究表明,该文的IHHT+CNN方法对单一与复合故障的正确率分别达到100%和99.74%,均高于其他3种方法,实现了不同工况下端到端的轴承复合故障智能诊断,并具有较好的泛化能力和鲁棒性.
AbstractList TH165%TH17; 针对农业机械装备中滚动轴承复合故障特征提取与智能诊断问题,该文提出了一种将希尔伯特-黄变换的改进算法(improved hilbert-huang transform,IHHT)与卷积神经网络(convolution neural network,CNN)相结合的诊断方法.首先,通过多种群差分进化改进的集合经验模式分解(multiple population differential evolution-ensemble empirical mode decomposition,MPDE-EEMD)和敏感固有模态函数筛选方法来改进HHT,提取出故障信号时频特征.然后,在AlexNet网络模型基础上遍历所有可能的CNN模型组合,构建出适应于滚动轴承故障诊断的CNN网络模型.再将训练集生成的IHHT时频图输入CNN中进行学习,不断更新网络参数;并将该模型应用于测试集,输出故障识别结果.最后,通过滚动轴承单一故障和复合故障2种试验,将所提出的IHHT+CNN方法分别与传统的BP神经网络、DWT+CNN和STFT+CNN方法进行比较.研究表明,该文的IHHT+CNN方法对单一与复合故障的正确率分别达到100%和99.74%,均高于其他3种方法,实现了不同工况下端到端的轴承复合故障智能诊断,并具有较好的泛化能力和鲁棒性.
Author 刘韬
伍星
施杰
AuthorAffiliation 昆明理工大学机电工程学院,昆明 650500;云南农业大学机电工程学院,昆明 650201%昆明理工大学机电工程学院,昆明,650500
AuthorAffiliation_xml – name: 昆明理工大学机电工程学院,昆明 650500;云南农业大学机电工程学院,昆明 650201%昆明理工大学机电工程学院,昆明,650500
Author_FL Wu Xing
Liu Tao
Shi Jie
Author_FL_xml – sequence: 1
  fullname: Shi Jie
– sequence: 2
  fullname: Wu Xing
– sequence: 3
  fullname: Liu Tao
Author_xml – sequence: 1
  fullname: 施杰
– sequence: 2
  fullname: 伍星
– sequence: 3
  fullname: 刘韬
BookMark eNo9j01LAkEcxudgkJkfIzrt9J-XfRnoElJtIHSxs-zszooSIzRE9QHCCiyDLAjpVNSlPBQUiPRlcke_RRtFpwd-8DwPvwVU0G2tEFoigAkRvrvSwk1jNCYA1PECIjAFChg4BnALqPjP51HZmKYElzAfgJMiWp11OvbqKQxr9uUme-1_fZxPuu_2cWgf7uzowo4v7WgwHZ5l18_T8Vt2-jm57056J1n_eHY7WERzabRrVPkvS2hnY71WCZ3q9uZWZa3qGALUdZQvXTcVXFCpeBAIiCgXknsqThLOAxl5sQceZTFJA5kKJRKWI6FYAHkrBVZCy7-7B5FOI92ot9r7ezp_rOujRnwof2yB567sGzr5YrU
ClassificationCodes TH165%TH17
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2020.04.005
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitle_FL Bearing compound fault diagnosis based on HHT algorithm and convolution neural network
EndPage 43
ExternalDocumentID nygcxb202004005
GrantInformation_xml – fundername: 国家自然科学基金面上项目; 云南省应用基础研究计划重点项目; 云南农业大学自然科学青年基金资助项目
  funderid: (51875272); (201601PE00008); (2015ZR13)
GroupedDBID -04
2B.
4A8
5XA
5XE
92G
92I
93N
ABDBF
ABJNI
ACGFO
ACGFS
ACUHS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CW9
EOJEC
FIJ
IPNFZ
OBODZ
PSX
RIG
TCJ
TGD
TUS
U1G
U5N
ID FETCH-LOGICAL-s1025-e7b55f9492be48890a249b46ecdd448ba6c60623c1f8bf9e9d3a6c9e380f94f03
ISSN 1002-6819
IngestDate Thu May 29 04:08:35 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords 轴承
卷积神经网络
希尔伯特-黄变换
多种群差分进化
集合经验模式分解
故障诊断
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1025-e7b55f9492be48890a249b46ecdd448ba6c60623c1f8bf9e9d3a6c9e380f94f03
PageCount 10
ParticipantIDs wanfang_journals_nygcxb202004005
PublicationCentury 2000
PublicationDate 2020-02-15
PublicationDateYYYYMMDD 2020-02-15
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-15
  day: 15
PublicationDecade 2020
PublicationTitle 农业工程学报
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2020
Publisher 昆明理工大学机电工程学院,昆明 650500
云南农业大学机电工程学院,昆明 650201%昆明理工大学机电工程学院,昆明,650500
Publisher_xml – name: 昆明理工大学机电工程学院,昆明 650500
– name: 云南农业大学机电工程学院,昆明 650201%昆明理工大学机电工程学院,昆明,650500
SSID ssib051370041
ssj0041925
ssib001101065
ssib023167668
Score 2.426808
Snippet TH165%TH17; 针对农业机械装备中滚动轴承复合故障特征提取与智能诊断问题,该文提出了一种将希尔伯特-黄变换的改进算法(improved hilbert-huang transform,IHHT)与卷积神经...
SourceID wanfang
SourceType Aggregation Database
StartPage 34
Title 采用HHT算法与卷积神经网络诊断轴承复合故障
URI https://d.wanfangdata.com.cn/periodical/nygcxb202004005
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La1QxFA59gOhCfOKbLsxKZryPJJOAm6Rzh0HQjS10V-6zrqbQTkG7l6pQH2AVpLhSdKNdKCiU4p9x5rb_wnMy6czFSn3A5XI4OffkS85NThKSE0KuZpKFqcjDGkv8rMbyAvpBlqa1kLEwa2RxFud43vnWbdGeZTfn-NzY-J3KrqWVblJPV397ruR_rAo8sCuekv0Hyw6VAgNosC-8wcLw_isb00hRmMzDEzWoYlTLdnsGaR1RBUxBTUgVpxGjRlIZ0YhT2aTGymt4WpbgVEVIGEOl5ZgmVb7jqGkaSZSUGhUqQXUTOSBjGHKkoqaFmjVD5UAoj0pphSE7jiCVBj3VcbBFIqxyiw0EgGMsGIQEaI3V2aRa2Fw0JO3_HQ4IQEACgHijFFA3bXFACuhtjVI4ogIe4mlRF3PSLXjA7BavX-HDX9R9L8U-YWsISyYqSG2hoSKrSKFMRjuDGH5osQCIojqA3_xgdtdgUMs9r-I00KsI6bp-51UGYV1c62EVF-HWbgeDjUGIqoNuTDW49WOovz7UX8fqsJF5PT7y38NdlZ37C-m9BGWwZ-bjZDIAV-dNkEltmqY1GiX7uBAw7MYDDIYgRrNO7od458FwpxTuE-B204CDcYTQfZDXD4Noz8F1irizUBmyzZwgx91ca0oPGs5JMrZ69xQ5pheWXLyZ_DS5sbe2Vr74AM2m_PSq_3njx7cnvfWv5fut8t2bcvtpufO83N7c3Xrcf_lxd-dL_9H33tv13rOH_Y0He683z5DZVjQz3a65C0Vqyz5e25w3Es4LxVSQ5OC4lBcHTCVM5GmWMSaTWKQwnw_C1C9kUqhcZSGwVB5KD74qvPAsmegsdvJzZMpPPSZ40vByyRjM4WMVFKHIRCwwQGKSnSdTruzzrsNYnv_FPhf-LHKRHB21gEtkoru0kl-GQXA3ueKM-hPmr4XO
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%87%87%E7%94%A8HHT%E7%AE%97%E6%B3%95%E4%B8%8E%E5%8D%B7%E7%A7%AF%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E8%AF%8A%E6%96%AD%E8%BD%B4%E6%89%BF%E5%A4%8D%E5%90%88%E6%95%85%E9%9A%9C&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E6%96%BD%E6%9D%B0&rft.au=%E4%BC%8D%E6%98%9F&rft.au=%E5%88%98%E9%9F%AC&rft.date=2020-02-15&rft.pub=%E6%98%86%E6%98%8E%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E6%9C%BA%E7%94%B5%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%98%86%E6%98%8E+650500&rft.issn=1002-6819&rft.volume=36&rft.issue=4&rft.spage=34&rft.epage=43&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2020.04.005&rft.externalDocID=nygcxb202004005
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg