基于深度学习的联锁测试序列推荐方法
U283; 测试序列的组织与选取是保证铁路信号联锁系统测试质量和效率的关键环节,现阶段主要采用人工方式进行,工作量大且容易遗留漏洞.通过结合专家经验及历史测试信息,提出一种基于深度学习的联锁功能测试序列推荐方法,用以辅助测试人员开展测试工作,提高测试效率.针对联锁拓扑结构特征难以通过深度学习提取和训练的问题,构建了基于站场拓扑结构的树形递归神经网络,提高模型对联锁测试数据的特征提取能力;针对联锁测试序列特点,设计加入注意力机制的编码器-解码器框架,解决模型训练时产生的信息压缩问题,提高模型对联锁逻辑及测试案例间逻辑关联的学习能力.基于实际站场数据进行了一系列对比实验,结果表明,将递归神经网络与...
        Saved in:
      
    
          | Published in | 铁道标准设计 Vol. 68; no. 9; pp. 192 - 199 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | Chinese | 
| Published | 
            北京交通大学电子信息工程学院,北京 100044%中国铁道科学研究院集团有限公司通信信号研究所,北京 100081
    
        01.09.2024
     国家铁路智能运输系统工程技术研究中心(中国铁道科学研究院集团有限公司),北京 100081%中国铁道科学研究院集团有限公司通信信号研究所,北京 100081%北京交通大学电子信息工程学院,北京 100044 国家铁路智能运输系统工程技术研究中心(中国铁道科学研究院集团有限公司),北京 100081  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1004-2954 | 
| DOI | 10.13238/j.issn.1004-2954.202212210001 | 
Cover
| Abstract | U283; 测试序列的组织与选取是保证铁路信号联锁系统测试质量和效率的关键环节,现阶段主要采用人工方式进行,工作量大且容易遗留漏洞.通过结合专家经验及历史测试信息,提出一种基于深度学习的联锁功能测试序列推荐方法,用以辅助测试人员开展测试工作,提高测试效率.针对联锁拓扑结构特征难以通过深度学习提取和训练的问题,构建了基于站场拓扑结构的树形递归神经网络,提高模型对联锁测试数据的特征提取能力;针对联锁测试序列特点,设计加入注意力机制的编码器-解码器框架,解决模型训练时产生的信息压缩问题,提高模型对联锁逻辑及测试案例间逻辑关联的学习能力.基于实际站场数据进行了一系列对比实验,结果表明,将递归神经网络与加入注意力机制的编码器-解码器框架相结合的测试序列推荐模型在训练集及测试集精确度方面均高于其他模型,达到90%以上并通过测试序列的执行时间和缺陷检测速率证明了该推荐模型的可行性. | 
    
|---|---|
| AbstractList | U283; 测试序列的组织与选取是保证铁路信号联锁系统测试质量和效率的关键环节,现阶段主要采用人工方式进行,工作量大且容易遗留漏洞.通过结合专家经验及历史测试信息,提出一种基于深度学习的联锁功能测试序列推荐方法,用以辅助测试人员开展测试工作,提高测试效率.针对联锁拓扑结构特征难以通过深度学习提取和训练的问题,构建了基于站场拓扑结构的树形递归神经网络,提高模型对联锁测试数据的特征提取能力;针对联锁测试序列特点,设计加入注意力机制的编码器-解码器框架,解决模型训练时产生的信息压缩问题,提高模型对联锁逻辑及测试案例间逻辑关联的学习能力.基于实际站场数据进行了一系列对比实验,结果表明,将递归神经网络与加入注意力机制的编码器-解码器框架相结合的测试序列推荐模型在训练集及测试集精确度方面均高于其他模型,达到90%以上并通过测试序列的执行时间和缺陷检测速率证明了该推荐模型的可行性. | 
    
| Abstract_FL | The organization and selection of test sequences are critical steps to ensure the quality and efficiency of testing in railway signal interlocking systems.At the present stage,this process is mainly carried out manually,resulting in heavy workload and potential omissions.By combining expert experience and historical test data,this paper proposes a deep learning-based interlocking test sequence recommendation method to assist testers in improving testing efficiency.To address the challenge of extracting and training the topological features of interlocking structure through deep learning,a tree-structured recursive neural network based on station yard topology was constructed to enhance the model's ability to extract features from interlocking test data.Considering the characteristics of interlocking test sequences,an encoder-decoder framework with attention mechanism was designed to solve the issue of information compression during model training,improving the model's ability to learn the logical connections between the interlocking system and test cases.Based on real station yard data,a series of comparative experiments were conducted.The results showed that the test sequence recommendation model combining a recursive neural network with the attention-enhanced encoder-decoder framework achieved over 90%accuracy in both the training and test sets,which is much higher than that of other models.The model's feasibility was further demonstrated through the execution time of test sequences and defect detection rates. | 
    
| Author | 梁志国 王海峰 张宏扬 苏昕宇  | 
    
| AuthorAffiliation | 北京交通大学电子信息工程学院,北京 100044%中国铁道科学研究院集团有限公司通信信号研究所,北京 100081;国家铁路智能运输系统工程技术研究中心(中国铁道科学研究院集团有限公司),北京 100081%中国铁道科学研究院集团有限公司通信信号研究所,北京 100081%北京交通大学电子信息工程学院,北京 100044;国家铁路智能运输系统工程技术研究中心(中国铁道科学研究院集团有限公司),北京 100081 | 
    
| AuthorAffiliation_xml | – name: 北京交通大学电子信息工程学院,北京 100044%中国铁道科学研究院集团有限公司通信信号研究所,北京 100081;国家铁路智能运输系统工程技术研究中心(中国铁道科学研究院集团有限公司),北京 100081%中国铁道科学研究院集团有限公司通信信号研究所,北京 100081%北京交通大学电子信息工程学院,北京 100044;国家铁路智能运输系统工程技术研究中心(中国铁道科学研究院集团有限公司),北京 100081 | 
    
| Author_FL | LIANG Zhiguo WANG Haifeng SU Xinyu ZHANG Hongyang  | 
    
| Author_FL_xml | – sequence: 1 fullname: SU Xinyu – sequence: 2 fullname: LIANG Zhiguo – sequence: 3 fullname: ZHANG Hongyang – sequence: 4 fullname: WANG Haifeng  | 
    
| Author_xml | – sequence: 1 fullname: 苏昕宇 – sequence: 2 fullname: 梁志国 – sequence: 3 fullname: 张宏扬 – sequence: 4 fullname: 王海峰  | 
    
| BookMark | eNo9j89Kw0AYxPdQwVr7GnpK_L7d7CZ7lOI_KHjRc0k2iTTIFlxF8FbwIIjVQ1vBi56KFxERkeZ5ujG-hQuKMDAwP5hhVkhDD3RGyBqCj4yyaKPw-8ZoHwECj0oe-BQoRScAwAZp_oNl0jamn7gUqZRCNAmzj-WiHFWfb7ac2ZfZYv709XBZD8ff42H1cV2_Tmx5a6_uq9FzfXNXTefV-2SVLOXxscnaf94ih9tbB51dr7u_s9fZ7HoGgXIvoQLyVOY8yHgo4oxJhSyXKuKISkiKUlElHAAVORIKzlTk_qhAhIpBylpk_bf3PNZ5rI96xeDsRLvF3mmaXJjCvQxAuin2A4-gXNw | 
    
| ClassificationCodes | U283 | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| DBID | 2B. 4A8 92I 93N PSX TCJ  | 
    
| DOI | 10.13238/j.issn.1004-2954.202212210001 | 
    
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ)  | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| DocumentTitle_FL | A Deep Learning-Based Interlocking Test Sequence Recommendation Method | 
    
| EndPage | 199 | 
    
| ExternalDocumentID | tdbzsj202409025 | 
    
| GrantInformation_xml | – fundername: (中国国家铁路集团有限公司科技研究开发计划); (国家铁路智能运输系统工程技术研究中心开放课题) funderid: (中国国家铁路集团有限公司科技研究开发计划); (国家铁路智能运输系统工程技术研究中心开放课题)  | 
    
| GroupedDBID | -03 2B. 4A8 92I 93N ALMA_UNASSIGNED_HOLDINGS CCEZO CEKLB GROUPED_DOAJ PSX TCJ  | 
    
| ID | FETCH-LOGICAL-s1025-b260fd9f54e576ae39c13f9c8511c69219c2c66ae0c8c137653c8323c467c30d3 | 
    
| ISSN | 1004-2954 | 
    
| IngestDate | Thu May 29 03:59:51 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Issue | 9 | 
    
| Keywords | deep learning recursive neural network 站场拓扑 联锁系统 测试序列 深度学习 station yard topology 递归神经网络 test sequence interlocking system  | 
    
| Language | Chinese | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-s1025-b260fd9f54e576ae39c13f9c8511c69219c2c66ae0c8c137653c8323c467c30d3 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | wanfang_journals_tdbzsj202409025 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-09-01 | 
    
| PublicationDateYYYYMMDD | 2024-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | 铁道标准设计 | 
    
| PublicationTitle_FL | Railway Standard Design | 
    
| PublicationYear | 2024 | 
    
| Publisher | 北京交通大学电子信息工程学院,北京 100044%中国铁道科学研究院集团有限公司通信信号研究所,北京 100081 国家铁路智能运输系统工程技术研究中心(中国铁道科学研究院集团有限公司),北京 100081%中国铁道科学研究院集团有限公司通信信号研究所,北京 100081%北京交通大学电子信息工程学院,北京 100044 国家铁路智能运输系统工程技术研究中心(中国铁道科学研究院集团有限公司),北京 100081  | 
    
| Publisher_xml | – name: 国家铁路智能运输系统工程技术研究中心(中国铁道科学研究院集团有限公司),北京 100081%中国铁道科学研究院集团有限公司通信信号研究所,北京 100081%北京交通大学电子信息工程学院,北京 100044 – name: 北京交通大学电子信息工程学院,北京 100044%中国铁道科学研究院集团有限公司通信信号研究所,北京 100081 – name: 国家铁路智能运输系统工程技术研究中心(中国铁道科学研究院集团有限公司),北京 100081  | 
    
| SSID | ssib001129966 ssj0002923791 ssib036436144 ssib051376206 ssib000270326 ssib003156931  | 
    
| Score | 2.3952265 | 
    
| Snippet | U283; 测试序列的组织与选取是保证铁路信号联锁系统测试质量和效率的关键环节,现阶段主要采用人工方式进行,工作量大且容易遗留漏洞.通过结合专家经验及历史测试信息,提出... | 
    
| SourceID | wanfang | 
    
| SourceType | Aggregation Database | 
    
| StartPage | 192 | 
    
| Title | 基于深度学习的联锁测试序列推荐方法 | 
    
| URI | https://d.wanfangdata.com.cn/periodical/tdbzsj202409025 | 
    
| Volume | 68 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1004-2954 databaseCode: DOA dateStart: 20220101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0002923791 providerName: Directory of Open Access Journals  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxNBdKkVxIsoKn6Tg-NFUnd3dr6Os5sNRdBTC72VzSRReohgUg-9FTwIYvXQKnjRU_EiIiLS_J4m1n_he283u6utn5fldebN-5zOvDcfGc-7LvCypZPwn-Z6HUhQBG9mnGdN2dW-dhCg6wyXBu7clYvL0e0VsTI3_6h2aml91FlwG0feK_kfr0IZ-BVvyf6DZ0uiUAAw-Be-4GH4_pWPWSqYabPYsjTCr05ZKlmsWBxgFZRYiYBtEQA4hlmfpYoZQI5YqiGQZAYAg1-AsblgOsYq22ZGFHR0GwGtmVGIA4yspuYtZnwsMRKJY3PO8vcsZyEvEedE3BA7jmgghlZEUzEtiV3K4rQAbNkRiElM_IGJLiQClGoCJXIhMQBZ2yQi2CVmcatCgZqEdM8bEzkN1kgqFIVqoepkg5iogDaxX18ZCaPy6Ffel0mHhJiSD2wyA8iseJDEEteIWVVzhkKLx6IoQSNGKLwlH4AuliwOUliByJbMUDUHmxrUOkwOC3AzoB10Fgoq0thmZpGjvKFQMhP8IByYCvsFAIbFNX4IxOQxIogl4JcEbZnjGLKxFmQIgZYGASpDlEqWQI6jjmJKLsLDqb9SMn-Hp5hU8bAT7ifXZ12pa6OLqU2hQf42YhGNBfnzWYcmeh7S7_qvEYeFksMC9AMIxkIUIahCnPLg6ajb2RiuYWfB88jimHc8hGjAry3FFLvxfj2twZykvizAAyFNtXvOIarHdZXZ3yLgSFSWa70hZFGKHu8sBT3h3Zipceu3StBlwkE_G9yrxb1Lp71TRcLasPnoc8ab27h_1uOTN-P98db0y8fJeHfyfnd_7-3X148PNre_bW9OPz89-LAzGT-fPHk13Xp38OzF9OXe9NPOOW-5nS4li83i-ZXmMMBHrjuh9Ptd0xdRTyiZ9bhxAe8bhzmakwZCHRc6CRW-0w5VFtxBfMAdxF6O-11-3psfPBj0LngN1deYq_nGqU4kRddkHPMaAemcyqQOL3qNQsnVYngdrv7kqkt_RrnsnayGgSve_Ojheu8qpAyjzjXy73e3_7yE | 
    
| linkProvider | Directory of Open Access Journals | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E7%9A%84%E8%81%94%E9%94%81%E6%B5%8B%E8%AF%95%E5%BA%8F%E5%88%97%E6%8E%A8%E8%8D%90%E6%96%B9%E6%B3%95&rft.jtitle=%E9%93%81%E9%81%93%E6%A0%87%E5%87%86%E8%AE%BE%E8%AE%A1&rft.au=%E8%8B%8F%E6%98%95%E5%AE%87&rft.au=%E6%A2%81%E5%BF%97%E5%9B%BD&rft.au=%E5%BC%A0%E5%AE%8F%E6%89%AC&rft.au=%E7%8E%8B%E6%B5%B7%E5%B3%B0&rft.date=2024-09-01&rft.pub=%E5%8C%97%E4%BA%AC%E4%BA%A4%E9%80%9A%E5%A4%A7%E5%AD%A6%E7%94%B5%E5%AD%90%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%8C%97%E4%BA%AC+100044%25%E4%B8%AD%E5%9B%BD%E9%93%81%E9%81%93%E7%A7%91%E5%AD%A6%E7%A0%94%E7%A9%B6%E9%99%A2%E9%9B%86%E5%9B%A2%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%E9%80%9A%E4%BF%A1%E4%BF%A1%E5%8F%B7%E7%A0%94%E7%A9%B6%E6%89%80%2C%E5%8C%97%E4%BA%AC+100081&rft.issn=1004-2954&rft.volume=68&rft.issue=9&rft.spage=192&rft.epage=199&rft_id=info:doi/10.13238%2Fj.issn.1004-2954.202212210001&rft.externalDocID=tdbzsj202409025 | 
    
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Ftdbzsj%2Ftdbzsj.jpg |