基于改进YOLOv7模型的柑橘表面缺陷在线检测

TP391.4%S24; 柑橘表面缺陷是水果检测分级的重要依据,针对传统柑橘表面缺陷检测方法效率低、精度低等问题,该研究提出一种柑橘表面缺陷的实时检测方法.该方法首先对柑橘图像进行图像增强,然后利用提出的YOLOv7-CACT模型对柑橘表面缺陷进行检测,该模型在YOLOv7模型骨干网络中引入坐标注意力模块(coordinate attention,CA),从而提高模型对缺陷部分的关注度.在网络头部引入CT(contextual transformer,CT)模块,融合静态和动态上下文表征特征,从而增强缺陷部分特征表达能力.通过试验确定CA模块和CT模块的最佳位置.改进后的YOLOv7-CACT...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 39; no. 23; pp. 142 - 151
Main Authors 贾雪莹, 赵春江, 周娟, 王庆艳, 梁晓婷, 何鑫, 黄文倩, 张驰
Format Journal Article
LanguageChinese
Published 上海海洋大学信息学院,上海 201306 01.12.2023
北京市农林科学院信息技术研究中心,北京 100097
北京市农林科学院智能装备技术研究中心,北京 100097
北京市农林科学院信息技术研究中心,北京 100097%陕西铁路工程职业技术学院,渭南 714000%北京市农林科学院智能装备技术研究中心,北京 100097
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.202308138

Cover

Abstract TP391.4%S24; 柑橘表面缺陷是水果检测分级的重要依据,针对传统柑橘表面缺陷检测方法效率低、精度低等问题,该研究提出一种柑橘表面缺陷的实时检测方法.该方法首先对柑橘图像进行图像增强,然后利用提出的YOLOv7-CACT模型对柑橘表面缺陷进行检测,该模型在YOLOv7模型骨干网络中引入坐标注意力模块(coordinate attention,CA),从而提高模型对缺陷部分的关注度.在网络头部引入CT(contextual transformer,CT)模块,融合静态和动态上下文表征特征,从而增强缺陷部分特征表达能力.通过试验确定CA模块和CT模块的最佳位置.改进后的YOLOv7-CACT模型检测结果平均精度均值(mean average precision,mAP)相较于原始模型增加了 4.1个百分点,达到 91.1%,满足了实际生产中对柑橘缺陷检测精度的要求.最后将基于YOLOv7-CACT的柑橘检测模型通过TensorRT进行部署,试验结果表明模型的推理时间满足柑橘生产线 10个/s的实时分选要求,总体的检测精度达到 94.4%,为柑橘表面缺陷在线检测提供了一种精准的实时检测方法.
AbstractList TP391.4%S24; 柑橘表面缺陷是水果检测分级的重要依据,针对传统柑橘表面缺陷检测方法效率低、精度低等问题,该研究提出一种柑橘表面缺陷的实时检测方法.该方法首先对柑橘图像进行图像增强,然后利用提出的YOLOv7-CACT模型对柑橘表面缺陷进行检测,该模型在YOLOv7模型骨干网络中引入坐标注意力模块(coordinate attention,CA),从而提高模型对缺陷部分的关注度.在网络头部引入CT(contextual transformer,CT)模块,融合静态和动态上下文表征特征,从而增强缺陷部分特征表达能力.通过试验确定CA模块和CT模块的最佳位置.改进后的YOLOv7-CACT模型检测结果平均精度均值(mean average precision,mAP)相较于原始模型增加了 4.1个百分点,达到 91.1%,满足了实际生产中对柑橘缺陷检测精度的要求.最后将基于YOLOv7-CACT的柑橘检测模型通过TensorRT进行部署,试验结果表明模型的推理时间满足柑橘生产线 10个/s的实时分选要求,总体的检测精度达到 94.4%,为柑橘表面缺陷在线检测提供了一种精准的实时检测方法.
Abstract_FL Citrus surface defects play a pivotal role in the fruit inspection and grading during agricultural production.Surface imperfections are also much easier to spot than inside ones,leading to accelerate the deterioration.However,conventional detection of citrus surface defects cannot fully meet the overall quality assessment in the large-scale production in recent years,due to the low efficiency and accuracy.In this study,an accurate,rapid and real-time detection was proposed to consider the diverse and complex nature of surface imperfections observed in citrus fruits.This speed and precision of detection were also enhanced for the quality of surface defects.Firstly,the images of citrus fruits were captured by industrial cameras.The generated images were enhanced to make the region of interest more outstanding.Then,the YOLOv7-CACT model was improved for the defect region in the enhanced citrus image.The coordinate attention(CA)module was introduced in the backbone network,in order to increase the attention to the defective part.The contextual transformer(CT)module was introduced in the head of the network to fuse the static and dynamic contextual representation features,thus enhancing the feature expression of the defective part.The superior performance was achieved in the modified YOLOv7-CACT model,compared with the baseline version.Especially,the detection accuracy was improved by 4.1%in the mean average precision(mAP).Consequently,the modified model was fully met the accuracy requirements for the identification of citrus surface defects in an offline setting.TensorRT was also employed around YOLOv7-CACT for the deployment of improved model,in order to real-time detect in practical scenarios.The results show that the improved YOLOv7-CACT-RT model was performed the best to detect the surface defects on the surface of citrus fruits in the grading and sorting production line with a transition rate of 10 fruits per second.The deployed YOLOv7-CACT-RT model was loaded into the grading software programmed by C++ language,in order to validate the performance.An online detection was conducted on 198 mixed normal and defective citrus fruits on the sorting line,achieving a detection accuracy of 94.4%.The improved model can be directly applied to grade and sort fruit in the production line,according to the external qualities.Meanwhile,this model can also be extended to the real-time surface defects detection of other fruits without specialized knowledge.Our future research will focus on the registration and fusion of RGB and NIR image,in order to improve the detection accuracy of fruit defects.
Author 赵春江
梁晓婷
王庆艳
黄文倩
贾雪莹
何鑫
张驰
周娟
AuthorAffiliation 上海海洋大学信息学院,上海 201306;北京市农林科学院智能装备技术研究中心,北京 100097;北京市农林科学院信息技术研究中心,北京 100097%陕西铁路工程职业技术学院,渭南 714000%北京市农林科学院智能装备技术研究中心,北京 100097;北京市农林科学院信息技术研究中心,北京 100097
AuthorAffiliation_xml – name: 上海海洋大学信息学院,上海 201306;北京市农林科学院智能装备技术研究中心,北京 100097;北京市农林科学院信息技术研究中心,北京 100097%陕西铁路工程职业技术学院,渭南 714000%北京市农林科学院智能装备技术研究中心,北京 100097;北京市农林科学院信息技术研究中心,北京 100097
Author_FL HUANG Wenqian
HE Xin
JIA Xueying
ZHOU Juan
LIANG Xiaoting
ZHANG Chi
WANG Qingyan
ZHAO Chunjiang
Author_FL_xml – sequence: 1
  fullname: JIA Xueying
– sequence: 2
  fullname: ZHAO Chunjiang
– sequence: 3
  fullname: ZHOU Juan
– sequence: 4
  fullname: WANG Qingyan
– sequence: 5
  fullname: LIANG Xiaoting
– sequence: 6
  fullname: HE Xin
– sequence: 7
  fullname: HUANG Wenqian
– sequence: 8
  fullname: ZHANG Chi
Author_xml – sequence: 1
  fullname: 贾雪莹
– sequence: 2
  fullname: 赵春江
– sequence: 3
  fullname: 周娟
– sequence: 4
  fullname: 王庆艳
– sequence: 5
  fullname: 梁晓婷
– sequence: 6
  fullname: 何鑫
– sequence: 7
  fullname: 黄文倩
– sequence: 8
  fullname: 张驰
BookMark eNo9j8tKw0AYRmdRwVr7FC5cJf7_ZJKZWUrxBoFudOGqzCST0iJTMHjbuXBXEAQX3kt1Ex9AxCD0ZUzSvoUVxdWBb3E-zhKp2YE1hKwguIiS-2t9t5em1kUA6gQCpUuBeiDQEzVS_18XSTNNexp89DgAwzqRxSj_yi_L64_p5H6_HbaPeZmNi6dhdXdRjq7K15vpOJs9Plef-ez2vXjIqnxSvpyXb8NlspCog9Q0_9gge5sbu61tJ2xv7bTWQydFoL4T-BIVF75mijGQGKBRmkcmFloYSZMoEEBNEMXaKCFQKZZIUJJrRiGJZew1yOqv90TZRNlupz84OrTzx44960an-id0noq-9w2Jpl_s
ClassificationCodes TP391.4%S24
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.202308138
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitle_FL Online detection of citrus surface defects using improved YOLOv7 modeling
EndPage 151
ExternalDocumentID nygcxb202323015
GrantInformation_xml – fundername: (国家自然科学基金); 北京市农林科学院改革与发展课题
GroupedDBID -04
2B.
4A8
5XA
5XE
92G
92I
93N
ABDBF
ABJNI
ACGFO
ACGFS
ACUHS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CW9
EOJEC
FIJ
IPNFZ
OBODZ
PSX
RIG
TCJ
TGD
TUS
U1G
U5N
ID FETCH-LOGICAL-s1025-6591a785b4a4409161eab7ced8b8e92fc6802e6cdbea881aa4f90a97b420fd9d3
ISSN 1002-6819
IngestDate Thu May 29 04:08:36 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 23
Keywords 注意力机制
deep learning
attention mechanism
YOLOv7
深度学习
surface defects
无损检测
柑橘
nondestructive determination
表面缺陷
TensorRT
citrus
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1025-6591a785b4a4409161eab7ced8b8e92fc6802e6cdbea881aa4f90a97b420fd9d3
PageCount 10
ParticipantIDs wanfang_journals_nygcxb202323015
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationTitle 农业工程学报
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2023
Publisher 上海海洋大学信息学院,上海 201306
北京市农林科学院信息技术研究中心,北京 100097
北京市农林科学院智能装备技术研究中心,北京 100097
北京市农林科学院信息技术研究中心,北京 100097%陕西铁路工程职业技术学院,渭南 714000%北京市农林科学院智能装备技术研究中心,北京 100097
Publisher_xml – name: 北京市农林科学院信息技术研究中心,北京 100097
– name: 北京市农林科学院信息技术研究中心,北京 100097%陕西铁路工程职业技术学院,渭南 714000%北京市农林科学院智能装备技术研究中心,北京 100097
– name: 上海海洋大学信息学院,上海 201306
– name: 北京市农林科学院智能装备技术研究中心,北京 100097
SSID ssib051370041
ssj0041925
ssib001101065
ssib023167668
Score 2.4577284
Snippet TP391.4%S24; 柑橘表面缺陷是水果检测分级的重要依据,针对传统柑橘表面缺陷检测方法效率低、精度低等问题,该研究提出一种柑橘表面缺陷的实时检测方法.该方法首先对柑橘图像...
SourceID wanfang
SourceType Aggregation Database
StartPage 142
Title 基于改进YOLOv7模型的柑橘表面缺陷在线检测
URI https://d.wanfangdata.com.cn/periodical/nygcxb202323015
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3JahRBtIgJiB7EFXcCWieZONVd67F60kMQNZcE4ilUb5PTCFlEc_LgLSAIHtxD9BI_QMRByM-YSfIXvlfdmekkigsMRfXrt9br7ve6p-oVITd5mqcuaWaNwqi8wYswb-hEmYZLnXJZkRVhhquR792XU7P8zpyYGzm2UJu1tLKcTKSrv1xX8j9eBRj4FVfJ_oNnB0wBAH3wL7TgYWj_ysc0FtS0aWRpzLHVMY0lNdA3NNY0alMTPZi-O_1IIdxqapkniamOaKyoARLuSQCTeRxDjUZawAT8GA4nqQ0QOWp5QQAxNFKeT8vjKISDLCQPceYEdCIBIuqJL-JriSSoqkbRAAE-ViAH4IMqCWpBnEQO2sKp_cvBWwN0sZcfUWsRAuZG5gCKwB_aoz1f0IOBbUMUgWaizgLb-hmF3EoVcCCl5w-GhvXPIkF4aIpJZQzoWtocqYMdvm8Vp1bVzOM4XtaPuAaF2rVTfnxhxIPWUea3AvwHWNYCCUYaqatwUEWasmxTdUcFYS1usLLEWJWCsLIG79HoZpTw4Q1FTAxETKD9kNqVZXIOlQ_vPumkjxPEABysxjAWKCmDUTJmo8moPUydGX4dGDzbA6yQIIevooKFuBHCYPoUTh4QfiZBpcRxcmNfxdu_V9AvjesWrtupZXEzp8mp6vVr3Jb30hkysrpwlpy0ncWqBE1-jpjt9d6P3vP-y2-7W2_Lu6e_ubH9YW3nzbP--ov-51e7G5t77z_ufO_tvf66_W5zp7fV__S0_2XtPJltxzOtqUa1wUhjieE2zlIY5pQWCXecQ-IsWe4SleaZTnRugiKVuhnkMs2S3GnNnOOFaTqjEh40i8xk4QUy2n3YzS-S8bypCsN40cwZbuDjEuGMLFSawvs4Lxy7RMYrw-erB8jS_CHXXP4zyhVyYnitXyWjy4sr-TVIipeT65U_fwIhXorr
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%94%B9%E8%BF%9BYOLOv7%E6%A8%A1%E5%9E%8B%E7%9A%84%E6%9F%91%E6%A9%98%E8%A1%A8%E9%9D%A2%E7%BC%BA%E9%99%B7%E5%9C%A8%E7%BA%BF%E6%A3%80%E6%B5%8B&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E8%B4%BE%E9%9B%AA%E8%8E%B9&rft.au=%E8%B5%B5%E6%98%A5%E6%B1%9F&rft.au=%E5%91%A8%E5%A8%9F&rft.au=%E7%8E%8B%E5%BA%86%E8%89%B3&rft.date=2023-12-01&rft.pub=%E4%B8%8A%E6%B5%B7%E6%B5%B7%E6%B4%8B%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E5%AD%A6%E9%99%A2%2C%E4%B8%8A%E6%B5%B7+201306&rft.issn=1002-6819&rft.volume=39&rft.issue=23&rft.spage=142&rft.epage=151&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.202308138&rft.externalDocID=nygcxb202323015
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg