基于声纹压缩和代价敏感的变压器状态检测评估方法

TM73; 声纹检测技术可以助力巡检人员对变压器状态进行检测和评估.文中提出一种基于声纹压缩和代价敏感的变压器状态检测和评估方法.该方法首先提取变压器音频的声纹特征,然后在频率维度上对声纹特征进行筛选和压缩,最后使用卷积神经网络评估变压器状态,并引入代价敏感损失函数以提高对难检出样本的关注度.以某35 kV变压器为研究对象,通过收集现场音频、模拟实验和样本扩充得到变压器音频数据集.测试结果表明,文中所提方法将声纹维度从1 025维降低到80维,计算量和显存分别降低到1 025维的8.1%和7.7%.同时,所提方法的声纹识别准确率高达83.5%,并将最难检出的短路电流异常状态的召回率从48.2%...

Full description

Saved in:
Bibliographic Details
Published in电力工程技术 Vol. 43; no. 3; pp. 209 - 216
Main Authors 胡赵宇, 李喆, 陈海威, 陆忻
Format Journal Article
LanguageChinese
Published 上海交通大学电气工程系,上海 200240%中国能源建设集团广西电力设计研究院有限公司,广西南宁 530007 28.05.2024
Subjects
Online AccessGet full text
ISSN2096-3203
DOI10.12158/j.2096-3203.2024.03.022

Cover

Abstract TM73; 声纹检测技术可以助力巡检人员对变压器状态进行检测和评估.文中提出一种基于声纹压缩和代价敏感的变压器状态检测和评估方法.该方法首先提取变压器音频的声纹特征,然后在频率维度上对声纹特征进行筛选和压缩,最后使用卷积神经网络评估变压器状态,并引入代价敏感损失函数以提高对难检出样本的关注度.以某35 kV变压器为研究对象,通过收集现场音频、模拟实验和样本扩充得到变压器音频数据集.测试结果表明,文中所提方法将声纹维度从1 025维降低到80维,计算量和显存分别降低到1 025维的8.1%和7.7%.同时,所提方法的声纹识别准确率高达83.5%,并将最难检出的短路电流异常状态的召回率从48.2%提升至63.6%.
AbstractList TM73; 声纹检测技术可以助力巡检人员对变压器状态进行检测和评估.文中提出一种基于声纹压缩和代价敏感的变压器状态检测和评估方法.该方法首先提取变压器音频的声纹特征,然后在频率维度上对声纹特征进行筛选和压缩,最后使用卷积神经网络评估变压器状态,并引入代价敏感损失函数以提高对难检出样本的关注度.以某35 kV变压器为研究对象,通过收集现场音频、模拟实验和样本扩充得到变压器音频数据集.测试结果表明,文中所提方法将声纹维度从1 025维降低到80维,计算量和显存分别降低到1 025维的8.1%和7.7%.同时,所提方法的声纹识别准确率高达83.5%,并将最难检出的短路电流异常状态的召回率从48.2%提升至63.6%.
Abstract_FL Voiceprint detection technology can assist inspectors in assessing the state of transformers.A method for detecting and assessing transformer states based on voiceprint compression and cost-sensitive techniques is proposed.The method first extracts voiceprint features from transformer audio,then filters and compresses these features in the frequency domain.Subsequently,a convolutional neural network is employed to evaluate the transformer's state,incorporating a cost-sensitive loss function to enhance attention towards difficult samples.Using a 35 kV transformer as the experimental subject,transformer audio data is collected through on-site recordings,simulated experiments and sample augmentation.Test results demonstrate that the proposed method reduces the voiceprint dimensionality from 1 025 to 80,decreasing computational complexity and video memory usage to 8.1%and 7.7%of the original 1 025 dimensions,respectively.Simultaneously,the proposed method achieves a voiceprint recognition accuracy of 83.5%and improves the recall rate of the most challenging short-circuit current anomaly from 48.2%to 63.6%.
Author 陈海威
李喆
胡赵宇
陆忻
AuthorAffiliation 上海交通大学电气工程系,上海 200240%中国能源建设集团广西电力设计研究院有限公司,广西南宁 530007
AuthorAffiliation_xml – name: 上海交通大学电气工程系,上海 200240%中国能源建设集团广西电力设计研究院有限公司,广西南宁 530007
Author_FL LI Zhe
LU Xin
CHEN Haiwei
HU Zhaoyu
Author_FL_xml – sequence: 1
  fullname: HU Zhaoyu
– sequence: 2
  fullname: LI Zhe
– sequence: 3
  fullname: CHEN Haiwei
– sequence: 4
  fullname: LU Xin
Author_xml – sequence: 1
  fullname: 胡赵宇
– sequence: 2
  fullname: 李喆
– sequence: 3
  fullname: 陈海威
– sequence: 4
  fullname: 陆忻
BookMark eNo9j0tLw0AUhWdRwVr7H9y5SpxH5pGllPqAghtdl0kzKQZJwSBuK2RlpQWhom66yEZXFkSlaX9OZuLPcIriWdzvcC_cw9kCtWSQKAB2EHQRRlTsxS6GPnMIhsQ67LmWEOMaqP_vN0EzTc8DiAVfi9ZBW8-KshjrfF4VCz0eVatXfX9XLvNy-WWmE5PNqudMTx7tST-9VLefZnhj8qH5GH2_ZeVqbh4W5n26DTYieZGq5h8b4Oygfdo6cjonh8et_Y6TIoipQyPBBAklFaEiyLNDekrgkBHKMBIUSokh5AHxGEeyxymPwoB7vo8QJ4pFpAF2f_9eyySSSb8bD64uE5vYjdMw7vfWtSGxUeQHp51nRA
ClassificationCodes TM73
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.12158/j.2096-3203.2024.03.022
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Transformer state detection and assessment method based on voiceprint compression and cost-sensitive techniques
EndPage 216
ExternalDocumentID jsdjgc202403025
GrantInformation_xml – fundername: 国家自然科学基金
  funderid: (52077133)
GroupedDBID -0C
-SC
-S~
2B.
2RA
4A8
5VR
92I
92M
93N
9D9
9DC
AFUIB
ALMA_UNASSIGNED_HOLDINGS
CAJEC
CQIGP
GROUPED_DOAJ
PB1
PB9
PSX
Q--
R-C
RT3
T8S
TCJ
U1F
U5C
ID FETCH-LOGICAL-s1025-5f8683da58de314de3a4e82d635621850aa2007b34671ac757fdb74991173e6f3
ISSN 2096-3203
IngestDate Thu May 29 03:58:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords acoustic pattern recognition
声纹压缩
卷积神经网络
声纹识别
代价敏感
模式识别
cost sensitivity
convolutional neural networks
变压器检测
transformer detection
acoustic pattern compression
pattern recognition
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1025-5f8683da58de314de3a4e82d635621850aa2007b34671ac757fdb74991173e6f3
PageCount 8
ParticipantIDs wanfang_journals_jsdjgc202403025
PublicationCentury 2000
PublicationDate 2024-05-28
PublicationDateYYYYMMDD 2024-05-28
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-28
  day: 28
PublicationDecade 2020
PublicationTitle 电力工程技术
PublicationTitle_FL Jiangsu Electrical Engineering
PublicationYear 2024
Publisher 上海交通大学电气工程系,上海 200240%中国能源建设集团广西电力设计研究院有限公司,广西南宁 530007
Publisher_xml – name: 上海交通大学电气工程系,上海 200240%中国能源建设集团广西电力设计研究院有限公司,广西南宁 530007
SSID ssib028777775
ssib051810600
ssib051374505
ssj0002857319
ssib036435454
ssib041261494
Score 2.4070988
Snippet TM73; 声纹检测技术可以助力巡检人员对变压器状态进行检测和评估.文中提出一种基于声纹压缩和代价敏感的变压器状态检测和评估方法.该方法首先提取变压器音频的声纹特征,然...
SourceID wanfang
SourceType Aggregation Database
StartPage 209
Title 基于声纹压缩和代价敏感的变压器状态检测评估方法
URI https://d.wanfangdata.com.cn/periodical/jsdjgc202403025
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 2096-3203
  databaseCode: DOA
  dateStart: 20170101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0002857319
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR27btRA0AqhoUEgQLyVgq3QBa_3Xa7vfIqQoEqkdJHP9gWlCBJJmlQBpSIokZCCgCZFGqiIhADl8Tn34DOYWW_OVnKIR7Mazc7Oc88z69tdB8GDAvfOhEI0JBTDDaj_OfzmBIW5TFWmaMaiDA8KP3kqZ-b443kxPzH5qrZraW21M52tjz1X8j9RBRzEFU_J_kNkR0wBATDEF1qIMLR_FWOSCGLaJLYk4djqBDGWkTgkiUJMbBADeB07TJNYhzER0U03Kkb6EogVSSQxQN9GQHNkDqOMRThxeKNrDIGPIVYjjQZZ0o0KoThFANgCDEAsHLEmtu34cFQjdl1GOg2hZaT8CuZpoezkchyL4iwxThxoaAV2gVDkKbGrlGLAtNEuZZSmGbEUAeBRsrGgtapIYEzLuwz00LLqMWiX1l55dItwEulZEumUggjE9bcnEcc__v1pdJzvzmaNulYcXcAsR0642cQ6GZzYUliLWFlzgUR_GT7OBQp9B8GLmuel4H2RUEuRSPg-4IvWQqhb3kUISFTFhI577GaTRl_FiTMz9mYCYCNHY9BkpHG2jwnUaLgDMAqgbmmAwgmIM8U5EBm60GnjMaUaGlzQ9DMO1I6a4-RCb4sYdRpZ-lAwrEWr1BbBwrnBopDV83B5XZd_3rB6Ug1NrT6LyrO551I_1K7a5f4R82kMuLvCuDz6fuZi9aWVfGkxQxpIdJG4EFyMoDIIa69lICdFeF-mqkpsBhU8LDpGOYzTCArcKqcJyhQXVQ4VUEGH0l-BueReZgvF3PeGRnr6DYZowKPfqO-OFC530-XFWvU7eyW47JetU7Z8Bl0NJtafXQuS_t5R72i7v38wPDrsb28NTz73377pHe_3jn8MdncGm3vDj5v9nffQ1f_wafj6-2Dj5WB_Y_Bt6-eXzd7JweDd4eDr7vVgrp3MNmca_rMsjRWKH78WXS01y1Oh84JRDk3KCx3leNMlLBhEmKb4B0iHQQ1G00wJ1c07isNClCpWyC67EUwuP18ubgZTWjLa7cgiDcOMG5rrTl6kgmV5V1LZ4cWtYMqbveAfuysLZ8J2-88kd4JL1U__bjC5-mKtuAdLidXOfRfrX8Puyec
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%A3%B0%E7%BA%B9%E5%8E%8B%E7%BC%A9%E5%92%8C%E4%BB%A3%E4%BB%B7%E6%95%8F%E6%84%9F%E7%9A%84%E5%8F%98%E5%8E%8B%E5%99%A8%E7%8A%B6%E6%80%81%E6%A3%80%E6%B5%8B%E8%AF%84%E4%BC%B0%E6%96%B9%E6%B3%95&rft.jtitle=%E7%94%B5%E5%8A%9B%E5%B7%A5%E7%A8%8B%E6%8A%80%E6%9C%AF&rft.au=%E8%83%A1%E8%B5%B5%E5%AE%87&rft.au=%E6%9D%8E%E5%96%86&rft.au=%E9%99%88%E6%B5%B7%E5%A8%81&rft.au=%E9%99%86%E5%BF%BB&rft.date=2024-05-28&rft.pub=%E4%B8%8A%E6%B5%B7%E4%BA%A4%E9%80%9A%E5%A4%A7%E5%AD%A6%E7%94%B5%E6%B0%94%E5%B7%A5%E7%A8%8B%E7%B3%BB%2C%E4%B8%8A%E6%B5%B7+200240%25%E4%B8%AD%E5%9B%BD%E8%83%BD%E6%BA%90%E5%BB%BA%E8%AE%BE%E9%9B%86%E5%9B%A2%E5%B9%BF%E8%A5%BF%E7%94%B5%E5%8A%9B%E8%AE%BE%E8%AE%A1%E7%A0%94%E7%A9%B6%E9%99%A2%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%2C%E5%B9%BF%E8%A5%BF%E5%8D%97%E5%AE%81+530007&rft.issn=2096-3203&rft.volume=43&rft.issue=3&rft.spage=209&rft.epage=216&rft_id=info:doi/10.12158%2Fj.2096-3203.2024.03.022&rft.externalDocID=jsdjgc202403025
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsdjgc%2Fjsdjgc.jpg