基于改进RetinaNet的果园复杂环境下苹果检测

S126; 为了快速准确地检测重叠、遮挡等果园复杂环境下的苹果果实目标,该研究提出一种基于改进RetinaNet的苹果检测网络.首先,该网络在传统RetinaNet的骨干网络ResNet50中嵌入Res2Net模块,提高网络对苹果基础特征的提取能力;其次,采用加权双向特征金字塔网络(Bi-directional Feature Pyramid Network,BiFPN)对不同尺度的特征进行加权融合,提升对小目标和遮挡目标的召回率;最后,采用基于焦损失(Focal Loss)和高效交并比损失(Efficient Intersection over Union Loss,EIoU Loss)的联...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 38; no. 15; pp. 314 - 322
Main Authors 孙俊, 钱磊, 朱伟栋, 周鑫, 戴春霞, 武小红
Format Journal Article
LanguageChinese
Published 江苏大学电气信息工程学院,镇江 212013 01.08.2022
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2022.15.034

Cover

More Information
Summary:S126; 为了快速准确地检测重叠、遮挡等果园复杂环境下的苹果果实目标,该研究提出一种基于改进RetinaNet的苹果检测网络.首先,该网络在传统RetinaNet的骨干网络ResNet50中嵌入Res2Net模块,提高网络对苹果基础特征的提取能力;其次,采用加权双向特征金字塔网络(Bi-directional Feature Pyramid Network,BiFPN)对不同尺度的特征进行加权融合,提升对小目标和遮挡目标的召回率;最后,采用基于焦损失(Focal Loss)和高效交并比损失(Efficient Intersection over Union Loss,EIoU Loss)的联合损失函数对网络进行优化,提高网络的检测准确率.试验结果表明,改进的网络在测试集上对叶片遮挡、枝干/电线遮挡、果实遮挡和无遮挡的苹果检测精度分别为94.02%、86.74%、89.42%和94.84%,平均精度均值(mean Average Precision,mAP)达到91.26%,较传统RetinaNet提升了5.02个百分点,检测一张苹果图像耗时42.72 ms.与Faster-RCNN和YOLOv4等主流目标检测网络相比,改进网络具有优异的检测精度,同时可以满足实时性的要求,为采摘机器人的采摘策略提供了参考.
ISSN:1002-6819
DOI:10.11975/j.issn.1002-6819.2022.15.034