基于深度学习轻量化的改进SSD煤矸快速分选模型

TD94; 针对SSD目标检测模型参数量大、运行速率低的问题,在SSD模型的基础上提出一种新的煤矸快速识别模型DSR-SSD.应用深度可分离卷积代替主干特征提取网络中的普通卷积,减少了模型的计算量;将RFB模块融入到SSD模型中,提高了模型的特征提取能力.经验证,DSR-SSD模型的识别速率为113.99帧/s、精确率为95.17%.将DSR-SSD与SSD,Faster-RCNN,YOLOv3 三种模型对比,发现DSR-SSD模型与SSD模型相比,精确率提高了2.29%,识别速率提高了60.89%;同时,DSR-SSD模型的精确率比Faster-RCNN模型高 2.86%,比YOLOv3 模...

Full description

Saved in:
Bibliographic Details
Published in东北大学学报(自然科学版) Vol. 44; no. 10; pp. 1474 - 1480
Main Authors 李娟莉, 魏代良, 李博, 文小
Format Journal Article
LanguageChinese
Published 太原理工大学 煤矿综采装备山西省重点实验室,山西 太原 030024 01.10.2023
太原理工大学 机械与运载工程学院,山西 太原 030024
Subjects
Online AccessGet full text
ISSN1005-3026
DOI10.12068/j.issn.1005-3026.2023.10.014

Cover

Abstract TD94; 针对SSD目标检测模型参数量大、运行速率低的问题,在SSD模型的基础上提出一种新的煤矸快速识别模型DSR-SSD.应用深度可分离卷积代替主干特征提取网络中的普通卷积,减少了模型的计算量;将RFB模块融入到SSD模型中,提高了模型的特征提取能力.经验证,DSR-SSD模型的识别速率为113.99帧/s、精确率为95.17%.将DSR-SSD与SSD,Faster-RCNN,YOLOv3 三种模型对比,发现DSR-SSD模型与SSD模型相比,精确率提高了2.29%,识别速率提高了60.89%;同时,DSR-SSD模型的精确率比Faster-RCNN模型高 2.86%,比YOLOv3 模型高 2.71%,识别速率分别是Faster-RCNN模型和YOLOv3 模型的14.90 倍和3.65 倍,证明了DSR-SSD模型性能优越.
AbstractList TD94; 针对SSD目标检测模型参数量大、运行速率低的问题,在SSD模型的基础上提出一种新的煤矸快速识别模型DSR-SSD.应用深度可分离卷积代替主干特征提取网络中的普通卷积,减少了模型的计算量;将RFB模块融入到SSD模型中,提高了模型的特征提取能力.经验证,DSR-SSD模型的识别速率为113.99帧/s、精确率为95.17%.将DSR-SSD与SSD,Faster-RCNN,YOLOv3 三种模型对比,发现DSR-SSD模型与SSD模型相比,精确率提高了2.29%,识别速率提高了60.89%;同时,DSR-SSD模型的精确率比Faster-RCNN模型高 2.86%,比YOLOv3 模型高 2.71%,识别速率分别是Faster-RCNN模型和YOLOv3 模型的14.90 倍和3.65 倍,证明了DSR-SSD模型性能优越.
Author 李博
魏代良
文小
李娟莉
AuthorAffiliation 太原理工大学 机械与运载工程学院,山西 太原 030024;太原理工大学 煤矿综采装备山西省重点实验室,山西 太原 030024
AuthorAffiliation_xml – name: 太原理工大学 机械与运载工程学院,山西 太原 030024;太原理工大学 煤矿综采装备山西省重点实验室,山西 太原 030024
Author_FL LI Bo
LI Juan-li
WEN Xiao
WEI Dai-liang
Author_FL_xml – sequence: 1
  fullname: LI Juan-li
– sequence: 2
  fullname: WEI Dai-liang
– sequence: 3
  fullname: LI Bo
– sequence: 4
  fullname: WEN Xiao
Author_xml – sequence: 1
  fullname: 李娟莉
– sequence: 2
  fullname: 魏代良
– sequence: 3
  fullname: 李博
– sequence: 4
  fullname: 文小
BookMark eNo9jztLA0EcxLeIYIz5GGJ1538ft7dbicQnBCyiddh7SYJswENMmcInijZioWAUJAhiYaU5kXyZ7F3uW3iiWA0zxcz8ZlBJd3SI0BwGGxPgYqFtt-JY2xjAsSgQbhMgtLA2YFZC5f98GlXjuOUBgGSuQ2QZLZp-Mk4u0_c3kwzM62A8fJh8feYnV-biJrs9TK-Hk9Fdo7GcHT1l_Q8zesl7fXN6nPfO0udHc38-i6YitRuH1T-toO3Vla3aulXfXNuoLdWtGANhlvSVL5kQWFDH5Z6QOMBSRSFXgqriDQ0CwNhjnAImnHPGFVFexBS40ve5ohU0_9t7oHSk9E6z3dnf08ViM_CCbtf7AS4wMaPfJgZj_g
ClassificationCodes TD94
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.12068/j.issn.1005-3026.2023.10.014
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Improved SSD Rapid Separation Model of Coal Gangue Based on Deep Learning and Light-Weighting
EndPage 1480
ExternalDocumentID dbdxxb202310014
GrantInformation_xml – fundername: (国家自然科学基金); (国家自然科学基金)
  funderid: (国家自然科学基金); (国家自然科学基金)
GroupedDBID -03
2B.
4A8
5XA
5XD
92E
92I
93N
ABDBF
ABJNI
ACGFS
ACUHS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
CW9
EAD
EAP
EAS
EOJEC
ESX
OBODZ
PSX
TCJ
TGP
U1G
U5M
ID FETCH-LOGICAL-s1024-9cac9488183576b891d19afe6a83a0093dd011b46301266646a2abf4a079cc6a3
ISSN 1005-3026
IngestDate Thu May 29 03:59:15 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 10
Keywords deep learning
target detection
SSD model
coal gangue separation
深度学习
目标检测
SSD模型
轻量化
煤矸分选
light-weighting
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1024-9cac9488183576b891d19afe6a83a0093dd011b46301266646a2abf4a079cc6a3
PageCount 7
ParticipantIDs wanfang_journals_dbdxxb202310014
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationTitle 东北大学学报(自然科学版)
PublicationTitle_FL Journal of Northeastern University(Natural Science)
PublicationYear 2023
Publisher 太原理工大学 煤矿综采装备山西省重点实验室,山西 太原 030024
太原理工大学 机械与运载工程学院,山西 太原 030024
Publisher_xml – name: 太原理工大学 煤矿综采装备山西省重点实验室,山西 太原 030024
– name: 太原理工大学 机械与运载工程学院,山西 太原 030024
SSID ssib000947529
ssib051368049
ssib023167010
ssj0040330
ssib002039846
ssib004675270
ssib006703041
ssib002263414
ssib008679651
ssib001128993
Score 2.3998408
Snippet TD94; 针对SSD目标检测模型参数量大、运行速率低的问题,在SSD模型的基础上提出一种新的煤矸快速识别模型DSR-SSD.应用深度可分离卷积代替主干特征提取网络中的普通卷积,减少...
SourceID wanfang
SourceType Aggregation Database
StartPage 1474
Title 基于深度学习轻量化的改进SSD煤矸快速分选模型
URI https://d.wanfangdata.com.cn/periodical/dbdxxb202310014
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1005-3026
  databaseCode: ABDBF
  dateStart: 20150901
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0040330
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RAdKhbED2In_hNDw4IZddJMpnMnGSym1A8eGkLvZVJNtXTCraF0lMPfqLoRTwoWAUpgnjwpK1I_0zTj3_he5Ps7miLX5cwmbz35n1M5r1JZt4QciXogpMtPK-p_Ew0eQHd2ASFbOa8CEMTZJhBBldb3BQT0_zGTDgz0rjqrFpaXMha-fKB-0r-x6pQB3bFXbL_YNkBUaiAMtgXrmBhuP6VjWkSUpXSWNOE41UmNBE0jmjs4SOo0QILumMLAKOoZjSRNO7QOKaJojKiMkUY2aYKYCKqgA5HOsrCI3BKVTw52cGnEqhxCwbtSttKSnVFimElkpJUirpGKiSlJdWWJZVQGbsBseVKUtXu8xBZhjnVkcP5oCCoBKFCmkDrbWwI2AMRtLa8ASkrAuAqz8GKkA0ErrAG3z6slB2rthB5RPYl3rogCqmgjjiqTAcWBCrTA6nIDijwpycCGUQ9gTJS9yOLP1yuV70Wfcm1JZRYdkASZrUZol1R8l-1M77PLBYNeAVZawtHyDSwLvv4NUue7SkS6VZYYAfp9bEqg_u2FwBWgtZDdWg0VFUDpPz2flLj-0UZh3GeVRvZayeI2WkDVmUy6HtJzt3RgDk-z-PVOUt1_ATza3agb_aZkNY5YyOtQSMt1HcLV1h6fBiUDJaKdrPu0lKGMJgtjB8ioz74b9YgozruxKkzVeBR6IT6MI-Qyg1lWaCkm0rPFxDAuXu0Ad3xXQJdoTNVsIkph3_QfcwgwYahc-gFQto_1lUUyFkQVJlQajEPE9pXwrXfqcBuHuzNmd4tJ86dOk6O1RPUMV2NNifIyPLtk-Sok7b0FLlerm5sbTzb_vK53FgrP61trb_d_f5t7-Hz8unLnVf3tl-s726-hvFi5_77ndWv5ebHvZXV8tGDvZXH2x_elW-enCbTaTLVnmjWB7E052H-wZsqN7kCTw_uP4xEJpXX9ZSZK4SRgcFvot0u6DvjAqIFCPgFF8Y32Rw3LFJ5LkxwhjR6d3rFWTIWZIblHp6emVeH1xrezVWUcd8zocmCc2SsFn-2HmjnZ3_pAuf_DHKBHBm-xRdJY-HuYnEJJg8L2eW63_wA1BDIdQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E8%BD%BB%E9%87%8F%E5%8C%96%E7%9A%84%E6%94%B9%E8%BF%9BSSD%E7%85%A4%E7%9F%B8%E5%BF%AB%E9%80%9F%E5%88%86%E9%80%89%E6%A8%A1%E5%9E%8B&rft.jtitle=%E4%B8%9C%E5%8C%97%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E7%89%88%EF%BC%89&rft.au=%E6%9D%8E%E5%A8%9F%E8%8E%89&rft.au=%E9%AD%8F%E4%BB%A3%E8%89%AF&rft.au=%E6%9D%8E%E5%8D%9A&rft.au=%E6%96%87%E5%B0%8F&rft.date=2023-10-01&rft.pub=%E5%A4%AA%E5%8E%9F%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6+%E7%85%A4%E7%9F%BF%E7%BB%BC%E9%87%87%E8%A3%85%E5%A4%87%E5%B1%B1%E8%A5%BF%E7%9C%81%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E5%B1%B1%E8%A5%BF+%E5%A4%AA%E5%8E%9F+030024&rft.issn=1005-3026&rft.volume=44&rft.issue=10&rft.spage=1474&rft.epage=1480&rft_id=info:doi/10.12068%2Fj.issn.1005-3026.2023.10.014&rft.externalDocID=dbdxxb202310014
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdbdxxb%2Fdbdxxb.jpg