基于神经耦合模型的异构词法数据转化和融合
为了扩大人工标注数据的规模,从而提高模型性能,尝试充分利用已有的异构人工标注数据训练模型参数.将Li等2015年提出的耦合序列标注方法扩展到基于BiLSTM的深度学习框架,直接在两个异构训练数据上训练参数,测试阶段则同时预测两个标签序列.在词性标注、分词词性联合标注两个任务上进行大量实验,结果表明,与多任务学习方法和传统耦合模型相比,神经耦合模型在利用词法异构数据方面更优越,在异构数据转化和融合两个场景上都取得更高的性能....
        Saved in:
      
    
          | Published in | 北京大学学报(自然科学版) Vol. 56; no. 1; pp. 97 - 104 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | Chinese | 
| Published | 
            苏州大学计算机科学与技术学院,苏州,215006
    
        20.01.2020
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0479-8023 | 
| DOI | 10.13209/j.0479-8023.2019.098 | 
Cover
| Abstract | 为了扩大人工标注数据的规模,从而提高模型性能,尝试充分利用已有的异构人工标注数据训练模型参数.将Li等2015年提出的耦合序列标注方法扩展到基于BiLSTM的深度学习框架,直接在两个异构训练数据上训练参数,测试阶段则同时预测两个标签序列.在词性标注、分词词性联合标注两个任务上进行大量实验,结果表明,与多任务学习方法和传统耦合模型相比,神经耦合模型在利用词法异构数据方面更优越,在异构数据转化和融合两个场景上都取得更高的性能. | 
    
|---|---|
| AbstractList | 为了扩大人工标注数据的规模,从而提高模型性能,尝试充分利用已有的异构人工标注数据训练模型参数.将Li等2015年提出的耦合序列标注方法扩展到基于BiLSTM的深度学习框架,直接在两个异构训练数据上训练参数,测试阶段则同时预测两个标签序列.在词性标注、分词词性联合标注两个任务上进行大量实验,结果表明,与多任务学习方法和传统耦合模型相比,神经耦合模型在利用词法异构数据方面更优越,在异构数据转化和融合两个场景上都取得更高的性能. | 
    
| Author | 李正华 张民 龚晨 黄德朋  | 
    
| AuthorAffiliation | 苏州大学计算机科学与技术学院,苏州,215006 | 
    
| AuthorAffiliation_xml | – name: 苏州大学计算机科学与技术学院,苏州,215006 | 
    
| Author_FL | LI Zhenghua ZHANG Min GONG Chen HUANG Depeng  | 
    
| Author_FL_xml | – sequence: 1 fullname: HUANG Depeng – sequence: 2 fullname: LI Zhenghua – sequence: 3 fullname: GONG Chen – sequence: 4 fullname: ZHANG Min  | 
    
| Author_xml | – sequence: 1 fullname: 黄德朋 – sequence: 2 fullname: 李正华 – sequence: 3 fullname: 龚晨 – sequence: 4 fullname: 张民  | 
    
| BookMark | eNo9jT9Lw0AYh2-oYK39CM5Oie-9uUvuwEWK_6DgonO5y_XEICkYxI4iHQRbLUIdHCIOioOo4Fb123hJPoYFxekHDw_Pb4HU0l7aJWSJgk8DBLmS-MAi6QnAwEeg0gcpaqT-D-dJM8sONFBEIUNG62TV3U2_p5flQ15-XFWnj258Xjzdu_yivB24z7MiH1Svo-J9UkzeitFL9fXshjfueljlo5m5SOasOsy6zb9tkL2N9d3Wltfe2dxurbW9jAIyLxKCmYiHlkoLseBaxxihNBgjMBVyozTnyjAIY2pjNGAtsihANEJwHtKgQZZ_uycqtSrd7yS946N09tjRien3NQICUKAs-AEB7WAi | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| DBID | 2B. 4A8 92I 93N PSX TCJ  | 
    
| DOI | 10.13209/j.0479-8023.2019.098 | 
    
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ)  | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) | 
    
| DocumentTitle_FL | Neural Network Coupled Model for Conversion and Exploitation of Heterogeneous Lexical Annotations | 
    
| EndPage | 104 | 
    
| ExternalDocumentID | bjdxxb202001014 | 
    
| GrantInformation_xml | – fundername: 国家自然科学基金; 江苏高校优势学科建设工程项目资助 funderid: (61525205,61876116,61702518); 江苏高校优势学科建设工程项目资助  | 
    
| GroupedDBID | -01 23M 2B. 4A8 5GY 8FE 8FH 92E 92I 93N AAABJ AAQEF ABJNI ABLSY ABPYQ ABUWG ABVRV ACECN ACGFS ACPRK ACTRF ADCJG ADGMY ADMLS ADMQQ ADRFT ADZSZ AENOO AEXCR AFKRA AFSCH AFTSM AFZMG AHIBC AIVZI AJZVN ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI BPHCQ BVBZV CCEZO CCPQU CCVFK CW9 HCIFZ LK8 M7P P2P PDI PHGZM PHGZT PMFND PQQKQ PSX TCJ TGP U1G U5K UY8  | 
    
| ID | FETCH-LOGICAL-s1024-7884d756f19f0c85bbc2729d2c204a65dab55ad406c1fc2d0ff247322d8855613 | 
    
| ISSN | 0479-8023 | 
    
| IngestDate | Thu May 29 04:00:37 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | 词性标注 BiLSTM 耦合模型 分词 深度学习  | 
    
| Language | Chinese | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-s1024-7884d756f19f0c85bbc2729d2c204a65dab55ad406c1fc2d0ff247322d8855613 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | wanfang_journals_bjdxxb202001014 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2020-01-20 | 
    
| PublicationDateYYYYMMDD | 2020-01-20 | 
    
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-20 day: 20  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | 北京大学学报(自然科学版) | 
    
| PublicationTitle_FL | Acta Scientiarum Naturalium Universitatis Pekinensis | 
    
| PublicationYear | 2020 | 
    
| Publisher | 苏州大学计算机科学与技术学院,苏州,215006 | 
    
| Publisher_xml | – name: 苏州大学计算机科学与技术学院,苏州,215006 | 
    
| SSID | ssib012289641 ssib051370299 ssj0030172 ssib001522812 ssib002258124 ssib000862120 ssib030194702 ssib008143590 ssib002040163 ssib006703675 ssib038076459  | 
    
| Score | 2.257665 | 
    
| Snippet | 为了扩大人工标注数据的规模,从而提高模型性能,尝试充分利用已有的异构人工标注数据训练模型参数.将Li等2015年提出的耦合序列标注方法扩展到基于BiLSTM的深度学习框架,直... | 
    
| SourceID | wanfang | 
    
| SourceType | Aggregation Database | 
    
| StartPage | 97 | 
    
| Title | 基于神经耦合模型的异构词法数据转化和融合 | 
    
| URI | https://d.wanfangdata.com.cn/periodical/bjdxxb202001014 | 
    
| Volume | 56 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: East & South Asia Database issn: 0479-8023 databaseCode: BVBZV dateStart: 20170101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.proquest.com/eastsouthasia omitProxy: false ssIdentifier: ssj0030172 providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central issn: 0479-8023 databaseCode: BENPR dateStart: 20170101 customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.proquest.com/central omitProxy: true ssIdentifier: ssj0030172 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEB7yuHgR4wPf7MEGPUyc6Znu6QYvPbu9BMEgkkBuYR47Sg4bMAmEnERyEExUhHjwsOJB8SAqeIv6I_wP7mZ_hlU9vbuTZMHHZWiqq3uqvtqZqprtrnaca8L30iJizBV5wNwwSZmbJrnnCh4lklMvysxemDvzfG4xvL3EliYmf1ZWLW2sp7PZ1th9Jf9jVaCBXXGX7D9YdjgpEKAN9oUrWBiuf2VjohmRTRIrokO8Ck10RBQQTSOOiWgSLXA1g-KG2SNCEM2JEkT5hqKJiJFZwvAQKXGdCIo82BXicNUkooGUOCCSmS5g87ABdKWRJ4ZGHYeLOpHlvSi2oQvnaQzvXo2GB_yRlb-cQYVERabRsGLbBtxOoXa6aYQURjXQV6H8IGrMjfqgi18ZBV3SMJejhh8-iJYGoVJpTeLIaAYs8YgFCA0DKzfTBUZipByaRSN6yCsB2FGPwVIZnACt8riwwRcWigv1XOoNnwmjTGkwhrKgCY9jIRButFyEDTkQOVbjNAdEhBUegBOeZVbNCo80QlN40sYIQOsQqnker3iLMJIuVvOrujbGjz3CpZ8q10TbiMceAH3MmQbUFKNdmR3OjUsh5axXnht-pE55upJvbqaInzn_edKZpuBovSlnOtbzd-8dyqF9Wo3ZKT1UAw_cis-rMSbDIHTkJLBkXCXmFRjxj_7q9WE2yUcxPjgwGUajGnd4wEK1gBLzA-jFnLwM3wL8KILh20Bnu-0Pwbg5Dgqz269dJO37lcB04ZRz0maUNVW-Hmacia0Hp50Z67PXatdtYfkbZ5xb3Tf7v_afHbzrHHx73n_0vvviSe_D227n6cHr7e73x73Odv_zbu_rXm_vS2_3U__Hx-7Oq-7LnX5nFzjPOotNvVCfc-3pKe4aJA0hLhMO84jxwpeFlwmWphmFTDqnGSCccJbDe5klOQT0mV9kNPeKgoYR-PdcCDwzNzjnTLVX263zTo1mCYdEIodULQhbGZVF0Yo4h-QsLbCE5wWnZiFYtm_HteUjP4eLf2a55JwYPX2Xnan1hxutKxDxr6dX7W_oN3lXuFc | 
    
| linkProvider | ProQuest | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E7%A5%9E%E7%BB%8F%E8%80%A6%E5%90%88%E6%A8%A1%E5%9E%8B%E7%9A%84%E5%BC%82%E6%9E%84%E8%AF%8D%E6%B3%95%E6%95%B0%E6%8D%AE%E8%BD%AC%E5%8C%96%E5%92%8C%E8%9E%8D%E5%90%88&rft.jtitle=%E5%8C%97%E4%BA%AC%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E7%89%88%EF%BC%89&rft.au=%E9%BB%84%E5%BE%B7%E6%9C%8B&rft.au=%E6%9D%8E%E6%AD%A3%E5%8D%8E&rft.au=%E9%BE%9A%E6%99%A8&rft.au=%E5%BC%A0%E6%B0%91&rft.date=2020-01-20&rft.pub=%E8%8B%8F%E5%B7%9E%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E8%8B%8F%E5%B7%9E%2C215006&rft.issn=0479-8023&rft.volume=56&rft.issue=1&rft.spage=97&rft.epage=104&rft_id=info:doi/10.13209%2Fj.0479-8023.2019.098&rft.externalDocID=bjdxxb202001014 | 
    
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fbjdxxb%2Fbjdxxb.jpg |