基于LIO-SAM建图和激光视觉融合定位的温室自主行走系统

S24%TP391.4; 为解决传统导航方案在温室内无法应对光照变化大、作物行间距窄、接收GPS信号差等问题,该研究提出了基于即时定位与地图构建技术的激光视觉融合式自主导航算法.该系统利用三维激光雷达VLP-16(Velodyne LiDAR,VLP-16)和惯性测量单元获取温室环境信息,采用基于紧耦合的雷达惯导定位建图(tightly-coupled lidar inertial odometry via smoothing and mapping,LIO-SAM)算法构建导航地图,基于轮式里程计和视觉里程计采用扩展卡尔曼滤波器算法实现局部定位,融合激光点云配准算法和自适应蒙特卡洛定位算法实...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 40; no. 3; pp. 227 - 239
Main Authors 孙国祥, 黄银锋, 汪小旵, 袁云鹏, 陈光宇
Format Journal Article
LanguageChinese
Published 南京农业大学工学院,南京 210031 01.02.2024
江苏省现代设施农业技术与装备实验室,南京 210031%南京农业大学工学院,南京 210031
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.202311146

Cover

Abstract S24%TP391.4; 为解决传统导航方案在温室内无法应对光照变化大、作物行间距窄、接收GPS信号差等问题,该研究提出了基于即时定位与地图构建技术的激光视觉融合式自主导航算法.该系统利用三维激光雷达VLP-16(Velodyne LiDAR,VLP-16)和惯性测量单元获取温室环境信息,采用基于紧耦合的雷达惯导定位建图(tightly-coupled lidar inertial odometry via smoothing and mapping,LIO-SAM)算法构建导航地图,基于轮式里程计和视觉里程计采用扩展卡尔曼滤波器算法实现局部定位,融合激光点云配准算法和自适应蒙特卡洛定位算法实现全局定位.同时,在自主行走系统应用A*算法规划全局路径和动态窗口算法规划局部路径,从而实现自主导航.试验结果表明,LIO-SAM算法构建的温室导航地图最大相对误差、最大绝对误差和均方根误差分别为 9.9%、0.081和 0.063 m,在温室内改进后的定位算法横向偏差小于 0.020 m,纵向偏差小于 0.090 m;当自主行走系统以 0.15、0.30和 0.50 m/s的速度运行时,横向偏差、纵向偏差和航向偏角的平均值分别小于 0.120 m、0.10 m和 8.5°,标准差分别小于 0.070 m、0.140 m和 6.6°.该导航方案满足自主行走系统在温室内高精度建图、定位和导航的需求,可为自主移动平台提供理论与技术支撑.
AbstractList S24%TP391.4; 为解决传统导航方案在温室内无法应对光照变化大、作物行间距窄、接收GPS信号差等问题,该研究提出了基于即时定位与地图构建技术的激光视觉融合式自主导航算法.该系统利用三维激光雷达VLP-16(Velodyne LiDAR,VLP-16)和惯性测量单元获取温室环境信息,采用基于紧耦合的雷达惯导定位建图(tightly-coupled lidar inertial odometry via smoothing and mapping,LIO-SAM)算法构建导航地图,基于轮式里程计和视觉里程计采用扩展卡尔曼滤波器算法实现局部定位,融合激光点云配准算法和自适应蒙特卡洛定位算法实现全局定位.同时,在自主行走系统应用A*算法规划全局路径和动态窗口算法规划局部路径,从而实现自主导航.试验结果表明,LIO-SAM算法构建的温室导航地图最大相对误差、最大绝对误差和均方根误差分别为 9.9%、0.081和 0.063 m,在温室内改进后的定位算法横向偏差小于 0.020 m,纵向偏差小于 0.090 m;当自主行走系统以 0.15、0.30和 0.50 m/s的速度运行时,横向偏差、纵向偏差和航向偏角的平均值分别小于 0.120 m、0.10 m和 8.5°,标准差分别小于 0.070 m、0.140 m和 6.6°.该导航方案满足自主行走系统在温室内高精度建图、定位和导航的需求,可为自主移动平台提供理论与技术支撑.
Abstract_FL Navigation challenges have been posed on the conventional systems in greenhouses,such as significant light variations,narrow crop row spacing,failure to receive satellite signals,and rigid travel paths.In this study,autonomous navigation was proposed to integrate laser vision with 3D SLAM(simultaneous localization and mapping).Environmental data was collected from 3D LIDAR VLP-16(Velodyne LiDAR)and an IMU(inertial measurement unit).The LIO-SAM(tightly-coupled lidar inertial odometry via smoothing and mapping)was employed to generate 3D point cloud maps,which were subsequently downscaled to the raster maps.This integration included the data from wheeled odometers and visual odometers using an Extended Kalman filter.Visual odometers provided the positional information to correct and update the state prediction of the mobile platform,functioning as a local localization tool.Additionally,the adaptive Monte Carlo localization data introduced the weights to the ndt-matching(normal distributions transform matching),in order to enhance the accuracy of global localization.Moreover,the autonomous walking system was utilized as the A* algorithm and dynamic window algorithm for the path creation and autonomous navigation.The navigation system of autonomous walking was composed of a remote monitoring platform and an on-board system.Specifically,the remote monitoring platform was responsible for selecting the working mode of the onboard system,then releasing the instruction of target points,and finally displaying the location.The on-board system was the executor of the instructions,in order to receive and execute the task instructions ordered by the monitoring platform.The remote monitoring and onboard systems were combined to realize the autonomous navigation task of the greenhouse transportation robot,according to real-time communication through a wireless network.Experimental results showed that the maximum relative error,the maximum absolute error,and the root mean square error of the greenhouse navigation map constructed by the LIO-SAM algorithm reached 9.9%,0.081 and 0.063 m,respectively.The improved localization algorithm reduced the horizontal and vertical deviations in the autonomous walking system(less than 0.020 and 0.090 m,respectively).The new system maintained mean values of horizontal deviation,longitudinal deviation,and heading declination below 0.120 m,0.100 m,and 8.5°,respectively,with standard deviations of less than 0.070 m,0.140 m,and 6.6°,respectively.The approach had significantly improved the accuracy of positioning and navigation.This navigation scheme can fulfill the need for high-precision localization and navigation in the autonomous walking systems within the greenhouse.The findings can provide theoretical and technical support to autonomous mobile platforms.
Author 孙国祥
陈光宇
汪小旵
袁云鹏
黄银锋
AuthorAffiliation 南京农业大学工学院,南京 210031;江苏省现代设施农业技术与装备实验室,南京 210031%南京农业大学工学院,南京 210031
AuthorAffiliation_xml – name: 南京农业大学工学院,南京 210031;江苏省现代设施农业技术与装备实验室,南京 210031%南京农业大学工学院,南京 210031
Author_FL CHEN Guangyu
YUAN Yunpeng
SUN Guoxiang
WANG Xiaochan
HUANG Yinfeng
Author_FL_xml – sequence: 1
  fullname: SUN Guoxiang
– sequence: 2
  fullname: HUANG Yinfeng
– sequence: 3
  fullname: WANG Xiaochan
– sequence: 4
  fullname: YUAN Yunpeng
– sequence: 5
  fullname: CHEN Guangyu
Author_xml – sequence: 1
  fullname: 孙国祥
– sequence: 2
  fullname: 黄银锋
– sequence: 3
  fullname: 汪小旵
– sequence: 4
  fullname: 袁云鹏
– sequence: 5
  fullname: 陈光宇
BookMark eNo9j8tKw0AYhWdRwVr7FC5cJc4_mUk6y1K8FCpdqOsyk0lKi0zBIOrOhbdCK-KygkUQii6KIEJpUF8m0-QxDCiuDnyL852zggq6pwOE1gDbANxjG127E0XaBoyJ5VaA2wQTBwCoW0DFf7qMylHUkZiB42FMoYjqZjxP5reNetPaq-6aeG4evsz9YPF9bi772eQqm_Szx6G5uzHTUfI5TEcXi9mLmT5n16_JLM6eBtnHW_oep_F4FS2F4jAKyn9ZQgdbm_u1HavR3K7Xqg0rgnySJViFSKmoAuIoQj0eBJJRzFkgFeNKCc5DH0JOQiW553LMQp8KlVMKFYKlU0Lrv70nQodCt1vd3vGRzo0tfdb2T2V-nGInVzk_M4Vqmw
ClassificationCodes S24%TP391.4
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.202311146
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitle_FL Autonomous navigation system in a greenhouse using LIO-SAM mapping and laser vision fusion localization
EndPage 239
ExternalDocumentID nygcxb202403023
GrantInformation_xml – fundername: 江苏省农业科技自主创新资金项目(CX
  funderid: (22)3097)
GroupedDBID -04
2B.
4A8
5XA
5XE
92G
92I
93N
ABDBF
ABJNI
ACGFO
ACGFS
ACUHS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CW9
EOJEC
FIJ
IPNFZ
OBODZ
PSX
RIG
TCJ
TGD
TUS
U1G
U5N
ID FETCH-LOGICAL-s1023-a582bbd4d123d2479eeb54095ebd59dda99fc1f92fdb976905fc4ad99f41820b3
ISSN 1002-6819
IngestDate Thu May 29 04:08:36 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords 自主导航
视觉里程计
autonomous navigation
自适应蒙特卡洛定位
温室
卡尔曼滤波
Kalman filter
simultaneous localization and mapping
greenhouse
adaptive Monte Carlo localization
visual odometer
即时定位与地图构建
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1023-a582bbd4d123d2479eeb54095ebd59dda99fc1f92fdb976905fc4ad99f41820b3
PageCount 13
ParticipantIDs wanfang_journals_nygcxb202403023
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationTitle 农业工程学报
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2024
Publisher 南京农业大学工学院,南京 210031
江苏省现代设施农业技术与装备实验室,南京 210031%南京农业大学工学院,南京 210031
Publisher_xml – name: 江苏省现代设施农业技术与装备实验室,南京 210031%南京农业大学工学院,南京 210031
– name: 南京农业大学工学院,南京 210031
SSID ssib051370041
ssj0041925
ssib001101065
ssib023167668
Score 2.4688582
Snippet S24%TP391.4; 为解决传统导航方案在温室内无法应对光照变化大、作物行间距窄、接收GPS信号差等问题,该研究提出了基于即时定位与地图构建技术的激光视觉融合式自主导航算法....
SourceID wanfang
SourceType Aggregation Database
StartPage 227
Title 基于LIO-SAM建图和激光视觉融合定位的温室自主行走系统
URI https://d.wanfangdata.com.cn/periodical/nygcxb202403023
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCO - Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1daxQxMLRXEH0QP_GbguZJtu7msrvJY_Zuj1asPthC38p-1qcT-gHaJx_8KrQigi8VLIJQ9KEIIpQe6p-5be9nOJPNfdRWrMIRspPJZCaT3EyW2QkhN8ADdxMubMtmWWzxJI8swdLEcjOW57A-nFRf9zZ51xuf5rdn3Jmh4bcDUUtLi_FYsnzodyX_o1WAgV7xK9l_0GyPKACgDvqFEjQM5ZF0TEOXygYNFA05liK8M3HPuq8msSEIdANgQCXUFUZFjYYeDRoY4AAQAT9JQ0GVT4XXrWiIDKmo6142FQIrKqSyHKmum3x8FFwThI7S4CiO3YVPVYkskBOk7OjR4RF4s7F7UNVNPpZyX3yh5s2jsmYoSC1IADRdxFdAP9DD1anykAGhoKm7eEyLlF3pNbPQdRBF4qjIvaQS-PB0BRzroI8CcjlaCs2waCBEArcDVEAsmFTHzL90NF0JuINvUxjvBmCb9a_FqyOtsp-qHS4wTCXooy9nbwp6EIlSAgusdpDmTThn28b4lWYH7ZInjPEwdqlMY2X2X3XQyJTZFIy_wspkUAdNofRdbQtxhLHeCGMMM_453Re_-3ONNx_PJY9inBcbL5MaJiMMjKVdISMqqAeNvp_t4KuEniFgmE7B659bXaeKtyb0Yq0w0sDVYQeGiWPkepfFW39mUH9H18yj5tyAyzd1ipw0Z7VRVW6802Ro-cEZckLNzZt8NdlZMlFs7LR3XpltV7R2inc_ijeruz-fFM9WOpvPO5srnfdrxeuXxdZ6-_va3vrT3e1PxdbHzovP7e1W58Nq59uXva-tvdbGOTLdCKdq45a5ncRawHQnVuQKFscpT8H3Sxn3ZZbFcPyRbhanrkzTSMo8cXLJ8jQGn1_abp7wKAUox0sT4up5Umk-bGYXyKjIpS-yNI_g-MYxe5YfZYznSVJ1MkwIeJGMmomYNf8-C7O_qerS31Euk-P9FX-FVBbnl7Kr4FEvxteMfn8B_0uc6g
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8ELIO-SAM%E5%BB%BA%E5%9B%BE%E5%92%8C%E6%BF%80%E5%85%89%E8%A7%86%E8%A7%89%E8%9E%8D%E5%90%88%E5%AE%9A%E4%BD%8D%E7%9A%84%E6%B8%A9%E5%AE%A4%E8%87%AA%E4%B8%BB%E8%A1%8C%E8%B5%B0%E7%B3%BB%E7%BB%9F&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%AD%99%E5%9B%BD%E7%A5%A5&rft.au=%E9%BB%84%E9%93%B6%E9%94%8B&rft.au=%E6%B1%AA%E5%B0%8F%E6%97%B5&rft.au=%E8%A2%81%E4%BA%91%E9%B9%8F&rft.date=2024-02-01&rft.pub=%E5%8D%97%E4%BA%AC%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%B7%A5%E5%AD%A6%E9%99%A2%2C%E5%8D%97%E4%BA%AC+210031&rft.issn=1002-6819&rft.volume=40&rft.issue=3&rft.spage=227&rft.epage=239&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.202311146&rft.externalDocID=nygcxb202403023
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg