基于深度学习的心血管血流动力学参数反演
R318.01; 考虑现有血流动力学参数反演方法在实际应用中存在计算量大、迭代易发散等问题,提出一种新的基于深度学习的心血管血流动力学参数反演方法.首先建立一维-零维耦合的多尺度血流动力学模型;随后基于卷积神经网络和全连接神经网络提出一种用于参数反演的混合多源输入深度网络模型;针对测量波形中的噪声干扰问题,提出一种同时利用多个深度网络的集成网络模型以提高反演精度.在参数灵敏度分析的基础上,对所提方法进行参数反演实验,研究在不同噪声水平下的反演精度,并与卡尔曼滤波法进行比较.结果表明,血压与血流波形的预测误差显著低于已有方法.所提方法能够准确高效地实现心血管模型参数反演,具有较好的应用前景....
Saved in:
| Published in | 东南大学学报(自然科学版) Vol. 52; no. 2; pp. 394 - 401 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | Chinese |
| Published |
东南大学机械工程学院,南京211189%南京医科大学第一附属医院心血管内科,南京210029
20.03.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1001-0505 |
| DOI | 10.3969/j.issn.1001-0505.2022.02.023 |
Cover
| Abstract | R318.01; 考虑现有血流动力学参数反演方法在实际应用中存在计算量大、迭代易发散等问题,提出一种新的基于深度学习的心血管血流动力学参数反演方法.首先建立一维-零维耦合的多尺度血流动力学模型;随后基于卷积神经网络和全连接神经网络提出一种用于参数反演的混合多源输入深度网络模型;针对测量波形中的噪声干扰问题,提出一种同时利用多个深度网络的集成网络模型以提高反演精度.在参数灵敏度分析的基础上,对所提方法进行参数反演实验,研究在不同噪声水平下的反演精度,并与卡尔曼滤波法进行比较.结果表明,血压与血流波形的预测误差显著低于已有方法.所提方法能够准确高效地实现心血管模型参数反演,具有较好的应用前景. |
|---|---|
| AbstractList | R318.01; 考虑现有血流动力学参数反演方法在实际应用中存在计算量大、迭代易发散等问题,提出一种新的基于深度学习的心血管血流动力学参数反演方法.首先建立一维-零维耦合的多尺度血流动力学模型;随后基于卷积神经网络和全连接神经网络提出一种用于参数反演的混合多源输入深度网络模型;针对测量波形中的噪声干扰问题,提出一种同时利用多个深度网络的集成网络模型以提高反演精度.在参数灵敏度分析的基础上,对所提方法进行参数反演实验,研究在不同噪声水平下的反演精度,并与卡尔曼滤波法进行比较.结果表明,血压与血流波形的预测误差显著低于已有方法.所提方法能够准确高效地实现心血管模型参数反演,具有较好的应用前景. |
| Author | 周阳 陈明龙 崔畅 潘怡 孙蓓蓓 |
| AuthorAffiliation | 东南大学机械工程学院,南京211189%南京医科大学第一附属医院心血管内科,南京210029 |
| AuthorAffiliation_xml | – name: 东南大学机械工程学院,南京211189%南京医科大学第一附属医院心血管内科,南京210029 |
| Author_FL | Cui Chang Chen Minglong Sun Beibei Zhou Yang Pan Yi |
| Author_FL_xml | – sequence: 1 fullname: Zhou Yang – sequence: 2 fullname: Pan Yi – sequence: 3 fullname: Cui Chang – sequence: 4 fullname: Chen Minglong – sequence: 5 fullname: Sun Beibei |
| Author_xml | – sequence: 1 fullname: 周阳 – sequence: 2 fullname: 潘怡 – sequence: 3 fullname: 崔畅 – sequence: 4 fullname: 陈明龙 – sequence: 5 fullname: 孙蓓蓓 |
| BookMark | eNrjYmDJy89LZWBQMTTQM7Y0s9TP0sssLs7TMzQwMNQ1MDUw1TMyMDLSMwAhYxYGTrg4BwNvcXFmkoGhkZElUIUZJ4Pl0_m7nuzqe7Z949Ndy56uXfZk54Lns1qe7m9-sbDh-bqFQPLZ1sanXSueds0Gyj7tb3o2dcPT_t5ne6bwMLCmJeYUp_JCaW6GUDfXEGcPXR9_d09nRx_dYkOg7bpmqaZmqZYGhokp5sYGpmYW5saJ5paGZgZplgZJZsYmhqZmRmmpSSZGRuZpKQbJhqkmxpbJKQZJqcbmxpbmhknJxtwM6hBzyxPz0hLz0uOz8kuL8oA2xqfkpVRUJIG8agCExsYAmVhgTQ |
| ClassificationCodes | R318.01 |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.3969/j.issn.1001-0505.2022.02.023 |
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| DocumentTitle_FL | Parameter inversion for cardiovascular hemodynamics based on deep learning |
| EndPage | 401 |
| ExternalDocumentID | dndxxb202202023 |
| GrantInformation_xml | – fundername: 国家重点研发计划 funderid: (2019YFB2006404) |
| GroupedDBID | 2B. 4A8 92I 93N ADMLS ALMA_UNASSIGNED_HOLDINGS PSX TCJ |
| ID | FETCH-LOGICAL-s1023-6e56e901ad73056873a79160f90b6341562feb4227fd0c1e439cd0be373971bc3 |
| ISSN | 1001-0505 |
| IngestDate | Thu May 29 04:08:38 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | 心血管;血流动力学;参数反演;深度学习;集成网络模型 |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-s1023-6e56e901ad73056873a79160f90b6341562feb4227fd0c1e439cd0be373971bc3 |
| PageCount | 8 |
| ParticipantIDs | wanfang_journals_dndxxb202202023 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-20 |
| PublicationDateYYYYMMDD | 2022-03-20 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationTitle | 东南大学学报(自然科学版) |
| PublicationTitle_FL | Journal of Southeast University(Natural Science Edition) |
| PublicationYear | 2022 |
| Publisher | 东南大学机械工程学院,南京211189%南京医科大学第一附属医院心血管内科,南京210029 |
| Publisher_xml | – name: 东南大学机械工程学院,南京211189%南京医科大学第一附属医院心血管内科,南京210029 |
| SSID | ssib012290226 ssib002258162 ssib036435511 ssib008679709 ssib023167012 ssib000947520 ssib021009659 ssib057620145 ssib000969306 ssib001128997 ssib006563446 ssib002039847 ssib006703054 ssib051368071 ssib004675274 |
| Score | 2.3489356 |
| Snippet | R318.01; 考虑现有血流动力学参数反演方法在实际应用中存在计算量大、迭代易发散等问题,提出一种新的基于深度学习的心血管血流动力学参数反演方法.首先建立一维-零维耦合的... |
| SourceID | wanfang |
| SourceType | Aggregation Database |
| StartPage | 394 |
| Title | 基于深度学习的心血管血流动力学参数反演 |
| URI | https://d.wanfangdata.com.cn/periodical/dndxxb202202023 |
| Volume | 52 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text issn: 1001-0505 databaseCode: ADMLS dateStart: 20200501 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text omitProxy: false ssIdentifier: ssib057620145 providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29b9QwFI_KVUIsCASIb3XAY4o_4tgek7ucKkRZaEW3KrkkMB0SbaWqE19TJegCCwzQpWIBwYAQFRL_THPlz-A9J3fnHlUpLJFlPz-_D5_tn89-9rwbLJd5L1C5b2hZ-AFLtZ8GeekHKawmeF7mPMetgfk74dxicGtJLk217jmnltZWs9nexqH3Sv7Hq5AHfsVbsv_g2RFTyIA0-Be-4GH4HsvHJJHEdEkckSTAr05IEpJYkZhhEeREISaijk0AjSERJYkiBogDS9MlWpBEk4jhoQcoihJMj3OAoYT1JhJrYKibhIkdzpADfDgSG-BJhzkdW71N6heGh4tgK4kmpm3JOsQoyyogkTrAs0mEtl1Jki6y0hpl0yBnhNKCFnFoxQalmFMLiowlrmuN9juszZjVwxCjSSzGJSBrB_OwSQr6u3XiALSwpgOZ5bgEmNTthFgTPWBInJD6PabhfgpAcSp8Tke_gOOZIEQC9G5IIt6YFbyLtlCogXZ9YAUBMu7ytN0iagP-ZmAOLv8ssjnQSnzQiBOSKKREYis2dota77oPMWISh89QkqO6FxCDkeW40cPFxr9znXnTnsyTVLoTq-TOAMKdWVI0va5ecAX1btbkXC5MaOxcjg3MjhqYRZ_ZMLv1PfWJaOl5P19fz5AGcBAXJ7xpDtM9bXnTUWf-9l0HWQRKukjJ4JugbiRF3IlwdjKoMO6BApgGNQvdyHjAzkFSAJOEu9MS2pl1XI5xLp3IiQyfXXCQENrXfciBY8AKB5kIABLSiSwomQi1g-wkKs3sE-0jy52Ekbk2682jjGpvL_bLtH_fWWgvnPFONwh5JqqHu7Pe1MaDc56p3u3u7b4cfPtS7e5UH3f2vr_ff_O8-vns1_bj_U_b8B18fVJtfqg230JptfV08PpztfVi8OPVeW-xmyy05_zm1Rd_BcPI-GEhwwJQSpor3N7QSqQKMCwtDc3ApgwAW1lkAeeqzGmPFYCoejnNCqEAWrGsJy54rf7DfnHRm9GZ4mmZiixnLIBVnRZZatKMpTTNCyXNJW-mUXW5GdVXlic60OW_k1zxTo3Hkatea_XRWnENkMpqdr3pdb8BFFrdsA |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E7%9A%84%E5%BF%83%E8%A1%80%E7%AE%A1%E8%A1%80%E6%B5%81%E5%8A%A8%E5%8A%9B%E5%AD%A6%E5%8F%82%E6%95%B0%E5%8F%8D%E6%BC%94&rft.jtitle=%E4%B8%9C%E5%8D%97%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E7%89%88%EF%BC%89&rft.au=%E5%91%A8%E9%98%B3&rft.au=%E6%BD%98%E6%80%A1&rft.au=%E5%B4%94%E7%95%85&rft.au=%E9%99%88%E6%98%8E%E9%BE%99&rft.date=2022-03-20&rft.pub=%E4%B8%9C%E5%8D%97%E5%A4%A7%E5%AD%A6%E6%9C%BA%E6%A2%B0%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%8D%97%E4%BA%AC211189%25%E5%8D%97%E4%BA%AC%E5%8C%BB%E7%A7%91%E5%A4%A7%E5%AD%A6%E7%AC%AC%E4%B8%80%E9%99%84%E5%B1%9E%E5%8C%BB%E9%99%A2%E5%BF%83%E8%A1%80%E7%AE%A1%E5%86%85%E7%A7%91%2C%E5%8D%97%E4%BA%AC210029&rft.issn=1001-0505&rft.volume=52&rft.issue=2&rft.spage=394&rft.epage=401&rft_id=info:doi/10.3969%2Fj.issn.1001-0505.2022.02.023&rft.externalDocID=dndxxb202202023 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdndxxb%2Fdndxxb.jpg |