基于文本分类和知识挖掘的远洋渔船安全问题分析

S147.2; 针对远洋渔船问题信息的知识挖掘与分析任务中存在渔船安全知识提取深度不足、安全问题文本分类精度不够的问题,该研究在归纳中国沿海 8省市远洋渔业管理机构和企业的约 5 000条远洋渔船安全问题文本数据特征的基础上,提出一种整合文本分类、知识挖掘和共现网络分析技术的远洋渔船安全问题分析方法.首先,构建基于双向预训练语言模型与文本卷积神经网络的混合深度学习模型BERT-TextCNN(bidirectional encoder representations from transformers-text convolutional neural networks),对渔船安全问题文本进...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 39; no. 24; pp. 215 - 223
Main Authors 刘爽, 丁哲, 吕超, 朱珊珊
Format Journal Article
LanguageChinese
Published 上海海洋大学工程学院,上海 201306%上海海洋大学经济管理学院,上海 201306 01.12.2023
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.202306095

Cover

Abstract S147.2; 针对远洋渔船问题信息的知识挖掘与分析任务中存在渔船安全知识提取深度不足、安全问题文本分类精度不够的问题,该研究在归纳中国沿海 8省市远洋渔业管理机构和企业的约 5 000条远洋渔船安全问题文本数据特征的基础上,提出一种整合文本分类、知识挖掘和共现网络分析技术的远洋渔船安全问题分析方法.首先,构建基于双向预训练语言模型与文本卷积神经网络的混合深度学习模型BERT-TextCNN(bidirectional encoder representations from transformers-text convolutional neural networks),对渔船安全问题文本进行基于《开普敦协定》规定的精准主题分类.进一步利用基于主题的词频-逆文档频率算法TF-IDF(term frequency-inverse document frequency),提取各主题下的关键渔船安全知识.最后,绘制渔船安全知识共现网络图,可视化分析各知识的分布规律及内在联系.结果表明,BERT-TextCNN模型对渔船安全问题文本的分类精度相较于BERT、Word2vec、Character embedding文本表示方法和DPCNN、BiLSTM-Attention、RCNN等 6种神经网络的其他 17种对比模型提升较为明显,准确率、宏平均召回率、宏平均F1 值分别达 98.20%、98.02%、98.05%;基于主题的渔船安全知识挖掘方法可以展示远洋渔船安全工作的重点排序和关系网络图,涵盖渔船的机电设备、消防装置、救生设备、无线电通信等 10类安全知识.该方法可为相关渔业管理人员提供高质量的渔船安全知识服务,对国内远洋渔业的安全管理效率、履约水平、智慧渔业工程的应用和发展有促进作用.
AbstractList S147.2; 针对远洋渔船问题信息的知识挖掘与分析任务中存在渔船安全知识提取深度不足、安全问题文本分类精度不够的问题,该研究在归纳中国沿海 8省市远洋渔业管理机构和企业的约 5 000条远洋渔船安全问题文本数据特征的基础上,提出一种整合文本分类、知识挖掘和共现网络分析技术的远洋渔船安全问题分析方法.首先,构建基于双向预训练语言模型与文本卷积神经网络的混合深度学习模型BERT-TextCNN(bidirectional encoder representations from transformers-text convolutional neural networks),对渔船安全问题文本进行基于《开普敦协定》规定的精准主题分类.进一步利用基于主题的词频-逆文档频率算法TF-IDF(term frequency-inverse document frequency),提取各主题下的关键渔船安全知识.最后,绘制渔船安全知识共现网络图,可视化分析各知识的分布规律及内在联系.结果表明,BERT-TextCNN模型对渔船安全问题文本的分类精度相较于BERT、Word2vec、Character embedding文本表示方法和DPCNN、BiLSTM-Attention、RCNN等 6种神经网络的其他 17种对比模型提升较为明显,准确率、宏平均召回率、宏平均F1 值分别达 98.20%、98.02%、98.05%;基于主题的渔船安全知识挖掘方法可以展示远洋渔船安全工作的重点排序和关系网络图,涵盖渔船的机电设备、消防装置、救生设备、无线电通信等 10类安全知识.该方法可为相关渔业管理人员提供高质量的渔船安全知识服务,对国内远洋渔业的安全管理效率、履约水平、智慧渔业工程的应用和发展有促进作用.
Abstract_FL Potential knowledge can be extracted from the safety text of distant water fishing(DWF)vessels.However,the previous approaches have not yet been fully developed for the safety text of fishing vessels.Some challenges remained,such as the low accuracy of text classification,and insufficient depth of knowledge extraction.In this study,an analytical approach was proposed to combine text classification,knowledge mining,and co-occurrence network technology under the Cape Town Agreement(CTA)of 2012.The text data on DWF vessel safety was also collected from the fishery management organizations,associations,and over 20 fishery enterprises from eight Chinese coastal provinces and cities,including Zhejiang,Shanghai,and Fujian.The DWF vessel safety corpus consisted of more than 5,000 valid questions and 100,000 characters.The analytical approach comprised three stages.Firstly,a hybrid deep learning model was developed using bidirectional encoder representations from transformers-text convolutional neural networks(BERT-TextCNN),according to the characteristics of DWF vessel safety text,such as diverse data types,sparse data features,and fuzzy boundaries.The character vectors were generated to extract the contextual semantic and deep syntactic information of the text using BERT during text representation.Multiple convolutional kernels of TextCNN were utilized to spatially model the generated character vectors and then to extract the local features for the accurate classification of safety theme.Secondly,term rrequency-inverse document frequency(TF-IDF)was employed to extract the key safety knowledge of fishing vessels,considering the importance and prevalence of knowledge within each safety theme.Finally,a co-occurrence network was constructed to visualize the safety knowledge of fishing vessels,including distributional patterns and interconnections.The results show that the BERT-TextCNN model achieved an accuracy,macro average recall rate,and macro average F1 value of 98.20%,98.02%,and 98.05%,respectively.The performance outperformed the other 17 comparative models,which utilized three text representations(BERT,Word2vec,and Character embedding)and six neural networks(TextCNN,Softmax,DPCNN,BiLSTM-Attention,RCNN,and Transformer).Meanwhile,the theme-based knowledge mining and analytical approach achieved clear rankings of DWF vessel compliance and safety management knowledge,as well as relationship networks crossing ten safety knowledge themes of fishing vessels,including provisions,structure,stability,electrical installations,fire protection,crew protections,life-saving equipment,emergency procedures,wireless communication,and shipborne navigation equipment.Intelligent safety knowledge services and decision-making tools were obtained to improve the compliance level and safety management efficiency in DWF.The finding can provide a strong reference to promote the application and development of knowledge service systems and the smart fishing industry.
Author 朱珊珊
丁哲
吕超
刘爽
AuthorAffiliation 上海海洋大学工程学院,上海 201306%上海海洋大学经济管理学院,上海 201306
AuthorAffiliation_xml – name: 上海海洋大学工程学院,上海 201306%上海海洋大学经济管理学院,上海 201306
Author_FL LYU Chao
LIU Shuang
DING Zhe
ZHU Shanshan
Author_FL_xml – sequence: 1
  fullname: LIU Shuang
– sequence: 2
  fullname: DING Zhe
– sequence: 3
  fullname: LYU Chao
– sequence: 4
  fullname: ZHU Shanshan
Author_xml – sequence: 1
  fullname: 刘爽
– sequence: 2
  fullname: 丁哲
– sequence: 3
  fullname: 吕超
– sequence: 4
  fullname: 朱珊珊
BookMark eNrjYmDJy89LZWBQNjTQMzS0NDfVz9LLLC7O0zM0MDDSNbMwtNQzMjAyNjAzsDRlYeCEi3Iw8BYXZyYZmBoamxsYmBhyMjg9nb_rya6-Z9Pan81Z87Sj7fnG3U8n9Tyfv_TF-rZnPdOe9c14Pqvlxf45z7Z0P9sx5UXHzqfrOp-2rng5fd3LRTOA6p_Nm8DDwJqWmFOcyguluRlC3VxDnD10ffzdPZ0dfXSLDQ2MjHTTjFMS05LSTJKSElMszc2SUkwMzJPSLAySLZJTzAzMjdMsTCws0hKTTJKNUw0SzS0NTc2MDQwsgK5MSjWxTDYz5mZQh5hbnpiXlpiXHp-VX1qUB7QxPq8yPbkiCeRjIxOgVcYAeidngA
ClassificationCodes S147.2
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.202306095
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitle_FL Evaluating the safety of distant-water fishing vessels using text classification and knowledge mining
EndPage 223
ExternalDocumentID nygcxb202324022
GrantInformation_xml – fundername: 农业农村部财政项目
  funderid: (D8021210076)
GroupedDBID -04
2B.
4A8
5XA
5XE
92G
92I
93N
ABDBF
ABJNI
ACGFO
ACGFS
ACUHS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CW9
EOJEC
FIJ
IPNFZ
OBODZ
PSX
RIG
TCJ
TGD
TUS
U1G
U5N
ID FETCH-LOGICAL-s1022-f3dafbf4bbad976bd407bf80c8cd6073f8488fab4c3e0a791563008041be49c63
ISSN 1002-6819
IngestDate Thu May 29 04:08:36 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 24
Keywords analytical approach
knowledge mining
安全
safety
Cape Town agreement
渔船
知识挖掘
text classification
分析方法
开普敦协定
文本分类
fishing vessels
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1022-f3dafbf4bbad976bd407bf80c8cd6073f8488fab4c3e0a791563008041be49c63
PageCount 9
ParticipantIDs wanfang_journals_nygcxb202324022
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationTitle 农业工程学报
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2023
Publisher 上海海洋大学工程学院,上海 201306%上海海洋大学经济管理学院,上海 201306
Publisher_xml – name: 上海海洋大学工程学院,上海 201306%上海海洋大学经济管理学院,上海 201306
SSID ssib051370041
ssj0041925
ssib001101065
ssib023167668
Score 2.455846
Snippet S147.2; 针对远洋渔船问题信息的知识挖掘与分析任务中存在渔船安全知识提取深度不足、安全问题文本分类精度不够的问题,该研究在归纳中国沿海 8省市远洋渔业管理机构和企业...
SourceID wanfang
SourceType Aggregation Database
StartPage 215
Title 基于文本分类和知识挖掘的远洋渔船安全问题分析
URI https://d.wanfangdata.com.cn/periodical/nygcxb202324022
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFB_KFooexE_8pqBzkq3JZDKZOc5ssxRBTy30VpJNUk8rtFvQnrVWLEVEapFiQRA8SEXwoPXgP-Om7X_he5Psbtr61V7CY-bNe7_3XrLvTTIzS8hNDkk3k0laT10vqfMsieqKSfzgmkSJ14qTOMHNyXfviYkpfmfanx6qjVRWLS104rHW4m_3lRwnqtAGccVdskeIbF8oNAAN8YUrRBiu_xVjGvpUNanRNOR4lSENBVWCwgwfiQbVDeSRkkpBw4AalxpjRzEqG9gCw7VPQ0l10_IIbFcFEVIlLQ9I5shjmigTugxUoMYSkirbBSqMQsk6pNISEmgYrqgKsBEIzazAPh5ACCqcan1sey1ytEiiamgxgQUZoEBp8etxqguQGrp6d00pu0CNiMYHPVacdK3xHjWsOkY5VFknGBBYkWaBgM9QWhNV9YjquxLmHVh30tOlrYMs-n0E79nAqQ4qxvzFTnCidR9rHBZ-i-FnYUGZf1zFAd4UYFfBjDeRjZi2hoNvpDgalEqiw0woZJmuykxYHCtVPvGM78trfqVEYsUW8cPZVwW-Tb-oYqyvYozZia6j_EHR0V8K2n4023oYIwd-54NiaphBfnZqZFibcdMclPYuvr3o5x6GJziIwVTZdz38o4b-8i5c3ODblQ4liBFyowfx9p8B2q177Sxqz1aqzMnT5FQ5PRzVxbN-hgwt3j9LTurZufKInPQcMd3N7Z_bq_na03zjY3d5aefz9-7LlZ3N97uflvKVtXx1fefN490fG_mX5_nXV7vL37pbz7pPPuy93tp7tw78-dsX58lUM5xsTNTLf0Kpz-MbmXrmJVEWZzyOowTmD3HCnSDOpNOSrURAks4k5OEsinnLS50oUC6e-ufg0WJxylVLeBdIrf2gnV4ko65gWeoxJ8Ut7IkDcoUXsSBVmYg5T8QlMlp6YKb8pZufORCjy_9muUJODJ6_q6TWmVtIr0H13omvl4H9BRE5sLg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%96%87%E6%9C%AC%E5%88%86%E7%B1%BB%E5%92%8C%E7%9F%A5%E8%AF%86%E6%8C%96%E6%8E%98%E7%9A%84%E8%BF%9C%E6%B4%8B%E6%B8%94%E8%88%B9%E5%AE%89%E5%85%A8%E9%97%AE%E9%A2%98%E5%88%86%E6%9E%90&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%88%98%E7%88%BD&rft.au=%E4%B8%81%E5%93%B2&rft.au=%E5%90%95%E8%B6%85&rft.au=%E6%9C%B1%E7%8F%8A%E7%8F%8A&rft.date=2023-12-01&rft.pub=%E4%B8%8A%E6%B5%B7%E6%B5%B7%E6%B4%8B%E5%A4%A7%E5%AD%A6%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E4%B8%8A%E6%B5%B7+201306%25%E4%B8%8A%E6%B5%B7%E6%B5%B7%E6%B4%8B%E5%A4%A7%E5%AD%A6%E7%BB%8F%E6%B5%8E%E7%AE%A1%E7%90%86%E5%AD%A6%E9%99%A2%2C%E4%B8%8A%E6%B5%B7+201306&rft.issn=1002-6819&rft.volume=39&rft.issue=24&rft.spage=215&rft.epage=223&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.202306095&rft.externalDocID=nygcxb202324022
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg