基于数据融合的疲劳寿命预测方法
V21%TB302; 针对疲劳实验耗时长、实验数据分散性大,通过小样本数据获得的高存活率P-S-N曲线不够准确,疲劳寿命预测不够准确和可靠的问题,基于性能-寿命概率映射原理数据融合方法对不同应力级的小样本疲劳数据进行数据融合,并分析和评估通过该方法获得准确P-S-N曲线的可行性.与融合前的小样本疲劳数据相比,数据融合后所得P-S-N曲线更接近总体大样本数据得出的P-S-N曲线,表明该方法能够在减少疲劳实验量的前提下有效提高疲劳寿命预测的可靠性与准确性.对比和评价不同模型对融合前与融合后数据的寿命预测能力,发现三参数幂函数模型的预测能力较强,而对于大样本数据,四种模型(Basquin S-N模型...
Saved in:
Published in | 航空材料学报 Vol. 44; no. 6; pp. 107 - 115 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | Chinese |
Published |
重庆大学航空航天学院,重庆 400044
01.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1005-5053 |
DOI | 10.11868/j.issn.1005-5053.2023.000017 |
Cover
Abstract | V21%TB302; 针对疲劳实验耗时长、实验数据分散性大,通过小样本数据获得的高存活率P-S-N曲线不够准确,疲劳寿命预测不够准确和可靠的问题,基于性能-寿命概率映射原理数据融合方法对不同应力级的小样本疲劳数据进行数据融合,并分析和评估通过该方法获得准确P-S-N曲线的可行性.与融合前的小样本疲劳数据相比,数据融合后所得P-S-N曲线更接近总体大样本数据得出的P-S-N曲线,表明该方法能够在减少疲劳实验量的前提下有效提高疲劳寿命预测的可靠性与准确性.对比和评价不同模型对融合前与融合后数据的寿命预测能力,发现三参数幂函数模型的预测能力较强,而对于大样本数据,四种模型(Basquin S-N模型、指数S-N模型、三参数幂函数S-N模型(基于对数正态分布)、三参数幂函数S-N模型(基于三参数威布尔分布))的预测能力很接近. |
---|---|
AbstractList | V21%TB302; 针对疲劳实验耗时长、实验数据分散性大,通过小样本数据获得的高存活率P-S-N曲线不够准确,疲劳寿命预测不够准确和可靠的问题,基于性能-寿命概率映射原理数据融合方法对不同应力级的小样本疲劳数据进行数据融合,并分析和评估通过该方法获得准确P-S-N曲线的可行性.与融合前的小样本疲劳数据相比,数据融合后所得P-S-N曲线更接近总体大样本数据得出的P-S-N曲线,表明该方法能够在减少疲劳实验量的前提下有效提高疲劳寿命预测的可靠性与准确性.对比和评价不同模型对融合前与融合后数据的寿命预测能力,发现三参数幂函数模型的预测能力较强,而对于大样本数据,四种模型(Basquin S-N模型、指数S-N模型、三参数幂函数S-N模型(基于对数正态分布)、三参数幂函数S-N模型(基于三参数威布尔分布))的预测能力很接近. |
Abstract_FL | To address the challenges posed by the time-consuming nature of fatigue test and the scattered nature of test data,it is evident that P-S-N curves derived from small samples with high survival rates lack sufficient accuracy,leading to unreliable predictions of fatigue life.The data fusion method based on the performance-life probability mapping principle is used to fuse small sample fatigue data of different stress levels,and the feasibility of obtaining accurate P-S-N curves by this method is analyzed and evaluated.The results demonstrated that P-S-N curves obtained post-fusion are closer to the P-S-N curve derived from larger sample datasets.This approach effectively enhances both reliability and accuracy in predicting fatigue life while simultaneously reducing the amount of required fatigue tests.A comparative evaluation is conducted on the predictive capabilities for fatigue life before and after fusion using different models;notably,it is found that the three-parameter power function model demonstrates superior predictive ability,whereas when ample fatigue data is available,the prediction capabilities among four models(Basquin S-N model,exponential S-N model,three-parameter power function S-N model(based on lognormal distribution),and three-parameter power function S-Nmodel(based on three-parameter Weibull distribution)exhibit a considerable degree of resemblance. |
Author | 高友智 姚建尧 刘许旸 张旭 王常印 |
AuthorAffiliation | 重庆大学航空航天学院,重庆 400044 |
AuthorAffiliation_xml | – name: 重庆大学航空航天学院,重庆 400044 |
Author_FL | ZHANG Xu YAO Jianyao GAO Youzhi LIU Xuyang WANG Changyin |
Author_FL_xml | – sequence: 1 fullname: ZHANG Xu – sequence: 2 fullname: YAO Jianyao – sequence: 3 fullname: LIU Xuyang – sequence: 4 fullname: WANG Changyin – sequence: 5 fullname: GAO Youzhi |
Author_xml | – sequence: 1 fullname: 张旭 – sequence: 2 fullname: 姚建尧 – sequence: 3 fullname: 刘许旸 – sequence: 4 fullname: 王常印 – sequence: 5 fullname: 高友智 |
BookMark | eNo9j7tKA0EYhaeIYIx5DLHa9Z_r7pYSvEHARuvw786OJoYJOIg-QApRIlokhYWCD6BisDAgvowz0bdwQfE0B77iO5wlUrMDWxKyQiGmNFXpWi_uOmdjCiAjCZLHDBiPoQpNaqT-zxdJ07luXmHKslSmdRL5-9nn7CqMn8Po8etu5K_P57fD-eTFX0z904e_ef9-GIbXyzB5C9PxMlkw2Hdl868bZH9zY6-1HbV3t3Za6-3IUWAsEjorlOZaZIYpKSgmqA0UMjeoUQiTcMiBa2S6xCKnslSYKaZEqZJMM0DeIKu_3lO0Bu1Bpzc4ObbVYufwqOif5dU9AQoo4z8MUlmp |
ClassificationCodes | V21%TB302 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.11868/j.issn.1005-5053.2023.000017 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitle_FL | Fatigue life prediction method based on data fusion |
EndPage | 115 |
ExternalDocumentID | hkclxb202406012 |
GrantInformation_xml | – fundername: (国家重点研发计划); (国家科技重大专项) funderid: (国家重点研发计划); (国家科技重大专项) |
GroupedDBID | -03 2B. 4A8 5VS 5XA 5XC 5XD 92H 92I 93N ABJNI ACGFS ADMLS ALMA_UNASSIGNED_HOLDINGS CCEZO CEKLB CW9 FIJ GROUPED_DOAJ IPNFZ PSX RIG TCJ TGT U1G U5L U5M |
ID | FETCH-LOGICAL-s1022-4d9c6d3d49f26541a7adf0c5bfada44f730b03da2deacb15e6a96264e679d20a3 |
ISSN | 1005-5053 |
IngestDate | Thu May 29 04:00:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | fatigue life prediction 寿命预测 data augmentation model comparison 模型对比 stress life model 数据融合 应力寿命模型 疲劳 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1022-4d9c6d3d49f26541a7adf0c5bfada44f730b03da2deacb15e6a96264e679d20a3 |
PageCount | 9 |
ParticipantIDs | wanfang_journals_hkclxb202406012 |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | 航空材料学报 |
PublicationTitle_FL | Journal of Aeronautical Materials |
PublicationYear | 2024 |
Publisher | 重庆大学航空航天学院,重庆 400044 |
Publisher_xml | – name: 重庆大学航空航天学院,重庆 400044 |
SSID | ssib001129858 ssib023167179 ssib051375391 ssj0000561693 ssib038074666 ssib031741046 |
Score | 2.4409473 |
Snippet | V21%TB302; 针对疲劳实验耗时长、实验数据分散性大,通过小样本数据获得的高存活率P-S-N曲线不够准确,疲劳寿命预测不够准确和可靠的问题,基于性能-寿命概率映射原理数据融合... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 107 |
Title | 基于数据融合的疲劳寿命预测方法 |
URI | https://d.wanfangdata.com.cn/periodical/hkclxb202406012 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1005-5053 databaseCode: DOA dateStart: 20120101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0000561693 providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text issn: 1005-5053 databaseCode: ADMLS dateStart: 20190201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text omitProxy: false ssIdentifier: ssj0000561693 providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Ni9QwFA_rCqIH8RO_mYM5Scc2TdPkmM50WAQFYRf2tqRN64IygjsLsuc9iLKih92DBwX_ABUXDy6I_4wzq_-F76WdmTIjfl1KJvn1fc7Me2mTF0KuC2syFZbWK1huPF5K7ikjMi-28OXwYUYRGNzvfPuOWFrht1aj1YUjdxurljYHWTvf-uW-kv_xKvSBX3GX7D94dkIUOqAN_oUreBiuf-VjmkZU9WiiacrxKlOaCqoimvjYkF2qoUdSlWIbwT6VkqYxVQDmriFownBIapqE2NBAsOfAAU3gLkU1c2BAAixxLKCtXE9Iq9MrxwkusgMWWiNxrZxsgO8i6-pGpRwXkE04ITXV0djtOJJ0qK6wQKDbHNFOboQkjq7TU8dNCLBWEmUAxRNZU0nkFBKjkVCJCMcREqFtEr_5-IPxmaUkaAUZ10ZEQwsnD0eRpsrMaz7pqcBNzRUaAizLOvPEb3D3CrwRMLCSK2SRYTOiTAEz4aE-4bfONIJqI-t8EJNCuiiGHNoTDm086d7V2wziafSerKlcv58_eJyhibDEDmQlR1ksBGs8ZXAZMuR3jfJFDAshBNMXtZBNcnzrP_mMtZIaM9woCGF-W5dXqsrnCyzn49YU1HIeI3Ssxc3f6eC2yfVL07_XyOiWT5GT9VSspavf1WmysLV-hpxoFOg8S7zhm4NvB89Hux9GO---v94Zvnhy-Gr7cO_j8On-8P3X4csvP95ujz49G-19Hu3vniMrvXS5s-TVB4x4G_igw-NW5cKGlquSiYgHJja29PMoK401nJcQ_cAE1jAL6UkWRIUwSsAMohCxssw34Xmy2H_YLy6QlmR5ofwS5v8GYqItVR4qaVlsiiIuZFleJK1a2bX6D2RjbcZjl_4MuUyOT38DV8ji4NFmcRWS4kF2zbn5J4HFhH4 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%95%B0%E6%8D%AE%E8%9E%8D%E5%90%88%E7%9A%84%E7%96%B2%E5%8A%B3%E5%AF%BF%E5%91%BD%E9%A2%84%E6%B5%8B%E6%96%B9%E6%B3%95&rft.jtitle=%E8%88%AA%E7%A9%BA%E6%9D%90%E6%96%99%E5%AD%A6%E6%8A%A5&rft.au=%E5%BC%A0%E6%97%AD&rft.au=%E5%A7%9A%E5%BB%BA%E5%B0%A7&rft.au=%E5%88%98%E8%AE%B8%E6%97%B8&rft.au=%E7%8E%8B%E5%B8%B8%E5%8D%B0&rft.date=2024-12-01&rft.pub=%E9%87%8D%E5%BA%86%E5%A4%A7%E5%AD%A6%E8%88%AA%E7%A9%BA%E8%88%AA%E5%A4%A9%E5%AD%A6%E9%99%A2%2C%E9%87%8D%E5%BA%86+400044&rft.issn=1005-5053&rft.volume=44&rft.issue=6&rft.spage=107&rft.epage=115&rft_id=info:doi/10.11868%2Fj.issn.1005-5053.2023.000017&rft.externalDocID=hkclxb202406012 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fhkclxb%2Fhkclxb.jpg |