基于机器学习的方形截面高层建筑干扰风压预测

TU973.213%TU317.1; 为了预测干扰作用下方形截面高层建筑风荷载,进行了 576组工况的风洞干扰试验.应用3种机器学习方法对受扰建筑风荷载进行了预测模型的训练、测试和对比验证.预测结果表明:决策树回归(DTR)、随机森林(RF)和梯度提升回归树(GBRT)模型均能有效预测受扰建筑风荷载,且预测平均风荷载性能优于预测极值风荷载;GBRT模型在预测风荷载方面表现最佳,该模型预测极小值和平均风荷载得到的R2分别为0.994 0和0.999 7;经过超参数优化的GBRT模型,不论是内插还是外推,均能展现良好的预测性能;对比显示在迎风面及两侧面上预测风压分布较好,在背风面预测效果相对较弱....

Full description

Saved in:
Bibliographic Details
Published in东南大学学报(自然科学版) Vol. 54; no. 6; pp. 1425 - 1437
Main Authors 胡松雁, 谢壮宁, 杨易
Format Journal Article
LanguageChinese
Published 华南理工大学亚热带建筑与城市科学全国重点实验室,广州 510641 01.11.2024
Subjects
Online AccessGet full text
ISSN1001-0505
DOI10.3969/j.issn.1001-0505.2024.06.011

Cover

Abstract TU973.213%TU317.1; 为了预测干扰作用下方形截面高层建筑风荷载,进行了 576组工况的风洞干扰试验.应用3种机器学习方法对受扰建筑风荷载进行了预测模型的训练、测试和对比验证.预测结果表明:决策树回归(DTR)、随机森林(RF)和梯度提升回归树(GBRT)模型均能有效预测受扰建筑风荷载,且预测平均风荷载性能优于预测极值风荷载;GBRT模型在预测风荷载方面表现最佳,该模型预测极小值和平均风荷载得到的R2分别为0.994 0和0.999 7;经过超参数优化的GBRT模型,不论是内插还是外推,均能展现良好的预测性能;对比显示在迎风面及两侧面上预测风压分布较好,在背风面预测效果相对较弱.GBRT模型可为预测干扰作用下高层建筑风荷载提供一种经济有效的、可以部分替代传统风洞试验和数值模拟的机器学习方法.
AbstractList TU973.213%TU317.1; 为了预测干扰作用下方形截面高层建筑风荷载,进行了 576组工况的风洞干扰试验.应用3种机器学习方法对受扰建筑风荷载进行了预测模型的训练、测试和对比验证.预测结果表明:决策树回归(DTR)、随机森林(RF)和梯度提升回归树(GBRT)模型均能有效预测受扰建筑风荷载,且预测平均风荷载性能优于预测极值风荷载;GBRT模型在预测风荷载方面表现最佳,该模型预测极小值和平均风荷载得到的R2分别为0.994 0和0.999 7;经过超参数优化的GBRT模型,不论是内插还是外推,均能展现良好的预测性能;对比显示在迎风面及两侧面上预测风压分布较好,在背风面预测效果相对较弱.GBRT模型可为预测干扰作用下高层建筑风荷载提供一种经济有效的、可以部分替代传统风洞试验和数值模拟的机器学习方法.
Abstract_FL To predict the wind load of the high-rise building with square section under interference,wind tun-nel interference tests are conducted under 576 working conditions.Three kinds of machine learning methods are used to train,test and verify the prediction model of wind load in the principal building.The prediction re-sults show that decision tree regression(DTR),random forest(RF),and gradient boosting regression tree(GBRT)models can predict the wind load of the principal building effectively,and the prediction perform-ance for the average wind load is better than that for the extreme wind load.The GBRT model has the best performance in predicting wind loads,and the R2 obtained by the model for predicting minimum and average wind loads are 0.994 0 and 0.999 7,respectively.The GBRT model with hyperparameter optimization,whether interpolated or extrapolated,can show good prediction performance.The comparison shows that the prediction performance for the wind pressure distribution is better on the windward side and the two sides,while the prediction effect is relatively weak on the lee side.GBRT model can provide an economical and ef-fective machine learning method for predicting wind loads of high-rise buildings under interference,which can partially replace traditional wind tunnel test and numerical simulation.
Author 胡松雁
谢壮宁
杨易
AuthorAffiliation 华南理工大学亚热带建筑与城市科学全国重点实验室,广州 510641
AuthorAffiliation_xml – name: 华南理工大学亚热带建筑与城市科学全国重点实验室,广州 510641
Author_FL Hu Songyan
Yang Yi
Xie Zhuangning
Author_FL_xml – sequence: 1
  fullname: Hu Songyan
– sequence: 2
  fullname: Xie Zhuangning
– sequence: 3
  fullname: Yang Yi
Author_xml – sequence: 1
  fullname: 胡松雁
– sequence: 2
  fullname: 谢壮宁
– sequence: 3
  fullname: 杨易
BookMark eNo9j81Kw0AURmdRwVr7FoKrxDt3kkmyEin-QcGNrksmk0iLTMFB7Fq6UAoBN6KiKBFElIIKLhLxbTopeQsriqsD3-J8nAVSU30VE7JEwWYBD1Z6dldrZVMAaoELro2Ajg3cBkprpP6_z5Om1l0BFDEARF4nq-aumBRpeVOYqyczfpzk99PrYXmRm6-sPH2ubrPq5dK8nZjPYjo-N_l7efZaPaQmHVXZsPwYLZK5JDzQcfOPDbK3sb7b2rLaO5vbrbW2pSkgtQSNJQBEnu9L4fgMEyGZcKUnosCXHBl6DgvCkDvcdSRKpH4og1hETpyg58asQZZ_vcehSkK13-n1jw7V7LEjlRwMxE8w8Fku-wYpoGZD
ClassificationCodes TU973.213%TU317.1
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-0505.2024.06.011
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Interference wind pressure prediction of high-rise buildings with square section based on machine learning
EndPage 1437
ExternalDocumentID dndxxb202406011
GrantInformation_xml – fundername: (国家自然科学基金); (广东省基础与应用基础研究基金资助项目); (亚热带建筑与城市科学全国重点实验室资助项目)
  funderid: (国家自然科学基金); (广东省基础与应用基础研究基金资助项目); (亚热带建筑与城市科学全国重点实验室资助项目)
GroupedDBID 2B.
4A8
92I
93N
ADMLS
ALMA_UNASSIGNED_HOLDINGS
PSX
TCJ
ID FETCH-LOGICAL-s1021-b1ed000c788db4832fbd3b5d7bc98d62327439aa64654d2d218ad9ebc4ef275e3
ISSN 1001-0505
IngestDate Thu May 29 04:08:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords wind pressure coefficient
interference effect
机器学习
gradient boosting regression tree
梯度提升回归树
干扰效应
高层建筑
high-rise buildings
machine learning
风压系数
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1021-b1ed000c788db4832fbd3b5d7bc98d62327439aa64654d2d218ad9ebc4ef275e3
PageCount 13
ParticipantIDs wanfang_journals_dndxxb202406011
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationTitle 东南大学学报(自然科学版)
PublicationTitle_FL Journal of Southeast University(Natural Science Edition)
PublicationYear 2024
Publisher 华南理工大学亚热带建筑与城市科学全国重点实验室,广州 510641
Publisher_xml – name: 华南理工大学亚热带建筑与城市科学全国重点实验室,广州 510641
SSID ssib012290226
ssib002258162
ssib036435511
ssib008679709
ssib023167012
ssib000947520
ssib021009659
ssib057620145
ssib000969306
ssib001128997
ssib006563446
ssib002039847
ssib006703054
ssib051368071
ssib004675274
Score 2.4401693
Snippet TU973.213%TU317.1; 为了预测干扰作用下方形截面高层建筑风荷载,进行了 576组工况的风洞干扰试验.应用3种机器学习方法对受扰建筑风荷载进行了预测模型的训练、测试和对比验...
SourceID wanfang
SourceType Aggregation Database
StartPage 1425
Title 基于机器学习的方形截面高层建筑干扰风压预测
URI https://d.wanfangdata.com.cn/periodical/dndxxb202406011
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1001-0505
  databaseCode: ADMLS
  dateStart: 20200501
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib057620145
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxQxdKhbEC-iqFi_6KE5ydZJZjJJTjKznVLEerGF3srOzoyetmBbKD1KD0qh4EVUFKWCiFJQwUNX_DedLfsvfO9Nuo21-MVCCG9f8r6yeXnZ5MXzJmSmZFQY0yxLDQGKKGXTtDP4uefwKXwE4D-6s3eimfnw1oJcGGmMOaeWVleyyc76sfdK_seqAAO74i3Zf7DssFMAQB3sCyVYGMq_sjFLJTPTLIlZGmKpU5ZGzLQIAl8ZFmusxFMsjggHID5LFTOAHBJyhEDASQBHIERrFkNzw0wNgSYJM9RPwpkWVEmIhMKeDSeIYUndHCo-tQqIH4mlTggiLNEEgIm7LCbeNHKO-NCnIrZDFiuH_2EFqMQsliwF2VvIcKqZVsS2QhJJRLwpy5ttpZA3RK5bDXdAqHXAYk76mGJJStInTHMXBaSKSXgQLCbBoHRRqDEqPEJ11S8yHmyoiNDeLDz4CVhBrYZqiYFfn2kSNFEk3686IDubWtAAgYisrXqOmoWUWpOAYVJXECKOUw-wIe14AdlhOIASQKnAG9ISdpiAzIb0A8rWLQsBJkXrYBRMW_5Neh1m4qhOOGb9Hp2sk750HWOd3dtOAK6X42F9Wd2umGDJrY7zxoGJDHljJDE5JDGJSqekudbN_pzvPO_ma2sZ4mCqIH7CGxXgsP2GNxpPzd6-68QGoZJurGPwVU83FyLuJTh7EX5g3CMB4Mg0j9zcdtCdEwtBoBO4eyUR-cbD7zFTpZP7kOPDCU4sIzhydBgrCEw54cQWAYQC0skNKHkQaSc2kyg0p0fWh5o76U1Ytd74nVLp_mG3bHfvOUvluTPeaRvjjsf1hHXWG1m_f867Wb3u7fW2-i971fP31c67vd03-y82-k93q-_b_UcfBq-2Bx-fVZ8fVt96-ztPqt0v_cefBm-3qq3NwfZG_-vmeW9-Op1rzTTt6y3NZY7nvjJe5GCVjtI6z0JYOJRZHmQyV1nH6ByiLoF7Ie12hBkdc5FDrNHOTZF1wqIUShbBBa_RXeoWF71xbkwHHEgRtPH4SQnVjsa_hnkuRBlG_pg3bgVetLPz8uKRYXTpzyiXvVOH08EVr7HyYLW4ChHHSnbNjr0fv9rVDQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%9A%84%E6%96%B9%E5%BD%A2%E6%88%AA%E9%9D%A2%E9%AB%98%E5%B1%82%E5%BB%BA%E7%AD%91%E5%B9%B2%E6%89%B0%E9%A3%8E%E5%8E%8B%E9%A2%84%E6%B5%8B&rft.jtitle=%E4%B8%9C%E5%8D%97%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E7%89%88%EF%BC%89&rft.au=%E8%83%A1%E6%9D%BE%E9%9B%81&rft.au=%E8%B0%A2%E5%A3%AE%E5%AE%81&rft.au=%E6%9D%A8%E6%98%93&rft.date=2024-11-01&rft.pub=%E5%8D%8E%E5%8D%97%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E4%BA%9A%E7%83%AD%E5%B8%A6%E5%BB%BA%E7%AD%91%E4%B8%8E%E5%9F%8E%E5%B8%82%E7%A7%91%E5%AD%A6%E5%85%A8%E5%9B%BD%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E5%B9%BF%E5%B7%9E+510641&rft.issn=1001-0505&rft.volume=54&rft.issue=6&rft.spage=1425&rft.epage=1437&rft_id=info:doi/10.3969%2Fj.issn.1001-0505.2024.06.011&rft.externalDocID=dndxxb202406011
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdndxxb%2Fdndxxb.jpg