融合Transformer与原型自监督的苹果叶部病害识别

TP391.4%S431.9; 为了缓解苹果叶部病害(apple leaf diseases,ALD)识别存在"类内差异大、类间差异小"的问题,该研究设计了一种融合 Transformer 与原型自监督(fusion transformer and prototype self-supervised,FTPSS)的模型,以进一步提高ALD识别精度.首先,利用Resnet50作为骨干网络,以提取ALD图像的多级特征图谱;然后,构造了一个简化自注意力(simplified self-attention,SSA)机制,且将其与空间注意力引导可变形卷积(spatial attent...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 40; no. 23; pp. 208 - 216
Main Authors 李大湘, 张雯凯, 刘颖
Format Journal Article
LanguageChinese
Published 西安市公共安全图像处理技术及应用重点实验室西安 710121%西安邮电大学通信与信息工程学院,西安 710121 01.12.2024
西安邮电大学通信与信息工程学院,西安 710121
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.202405187

Cover

Abstract TP391.4%S431.9; 为了缓解苹果叶部病害(apple leaf diseases,ALD)识别存在"类内差异大、类间差异小"的问题,该研究设计了一种融合 Transformer 与原型自监督(fusion transformer and prototype self-supervised,FTPSS)的模型,以进一步提高ALD识别精度.首先,利用Resnet50作为骨干网络,以提取ALD图像的多级特征图谱;然后,构造了一个简化自注意力(simplified self-attention,SSA)机制,且将其与空间注意力引导可变形卷积(spatial attention guided deformable convolution,SAG-DC)相结合,设计了一种简化自注意力可变卷积 Transformer(simplified self-attention and deformable convolution transformer,SSADC-TF)编码器,用于对主干网络提取的多级特征图谱进行交互融合,以增强模型对ALD图像中不规则病变区域的感知能力;最后,构造了一个原型自监督(prototype self-supervised,PSS)学习模块,即通过构造"正交"与"聚集"二个自监督损失函数用于约束模型的训练,以缓解ALD图像识别中存在的语义鸿沟问题.基于标准图像集与真实图像集的对比试验结果表明,ALD图像经SSADC-TF逐层特征融合与PSS学习之后,FTPSS模型识别精度分别达到98.61%与98.73%,较基线模型分别提高5.15与4.49个百分点,能够满足智慧农业ALD识别的应用需求.
AbstractList TP391.4%S431.9; 为了缓解苹果叶部病害(apple leaf diseases,ALD)识别存在"类内差异大、类间差异小"的问题,该研究设计了一种融合 Transformer 与原型自监督(fusion transformer and prototype self-supervised,FTPSS)的模型,以进一步提高ALD识别精度.首先,利用Resnet50作为骨干网络,以提取ALD图像的多级特征图谱;然后,构造了一个简化自注意力(simplified self-attention,SSA)机制,且将其与空间注意力引导可变形卷积(spatial attention guided deformable convolution,SAG-DC)相结合,设计了一种简化自注意力可变卷积 Transformer(simplified self-attention and deformable convolution transformer,SSADC-TF)编码器,用于对主干网络提取的多级特征图谱进行交互融合,以增强模型对ALD图像中不规则病变区域的感知能力;最后,构造了一个原型自监督(prototype self-supervised,PSS)学习模块,即通过构造"正交"与"聚集"二个自监督损失函数用于约束模型的训练,以缓解ALD图像识别中存在的语义鸿沟问题.基于标准图像集与真实图像集的对比试验结果表明,ALD图像经SSADC-TF逐层特征融合与PSS学习之后,FTPSS模型识别精度分别达到98.61%与98.73%,较基线模型分别提高5.15与4.49个百分点,能够满足智慧农业ALD识别的应用需求.
Abstract_FL Apple leaf diseases(ALD)identification can be characterized by"significant intra-class variation and subtle inter-class differences".In this study,an innovative model was presented to integrate transformer with prototype self-supervised(FTPSS)learning.This improved model aimed to significantly elevate the precision of ALD recognition,thereby enhancing disease management strategies in orchards.The ResNet50 was utilized as the backbone network in the FTPSS model.This robust architecture was employed to extract multi-level feature maps from ALD images,in order to capture the intricate details for accurate disease identification.An encoder design was also integrated a simplified self-attention(SSA)mechanism with spatial attention guided deformable convolution(SAG-DC).The simplified self-attention and deformable convolution transformer(SSADC-TF)was used to facilitate the effective interaction and fusion of multi-level feature maps.The extracted features were then processed.The sensitivity of model was enhanced for the irregular lesion areas within ALD images.SSADC-TF was significantly distinguished among different disease manifestations.A prototype self-supervised(PSS)learning module was introduced to further verify the performance of model.Two self-supervised loss functions:"Orthogonality"and"Clustering"were selected in the module.In the"Orthogonality"loss,the feature representations of different ALD classes were orthogonal to each other.A clear separation among classes was promoted to enhance the identification of the model.Meanwhile,the"Clustering"loss was used to tighten the intra-class compactness,thus ensuring that the variations within the same class was suitable for the robustness of the model.Extensive experiments were conducted on both standard and real-world image datasets,indicating the remarkable effectiveness of FTPSS model.The FTPSS model was achieved in a recognition accuracy of 98.61%on the standard image set,indicating a significant improvement of 5.15 percentage points over the baseline model.Similarly,the FTPSS model was obtained an accuracy of 98.73%on the real-world image set,indicating an enhancement of 4.49 percentage points,compared with the baseline.These results underscored the robust performance of FTPSS model to identify ALD,even in the presence of significant intra-class variation and subtle inter-class differences.The FTPSS model was attributed to the innovative integration of Transformer with Prototype Self-Supervised learning.There were the powerful feature extraction of ResNet50.SSADC-TF was also enhanced feature interaction and fusion.The complex details in ALD images were captured to achieve in a 2.40 percentage point improvement.Furthermore,the PSS learning module was introduced to mitigate the semantic gap,where the model was generalized well to new,unseen ALD cases.The accuracy of ALD image recognition increased by 2.69 percentage points.In conclusion,the FTPSS model shared a significant advancement in ALD recognition,with the potential to revolutionize disease management strategies in orchards.The precise,timely information can be expected to apply into the automatic process of disease detection ALD,thereby preserving the health and productivity of the orchards.This finding can greatly contribute to the field of precision agriculture using advanced deep learning techniques.
Author 李大湘
刘颖
张雯凯
AuthorAffiliation 西安邮电大学通信与信息工程学院,西安 710121;西安市公共安全图像处理技术及应用重点实验室西安 710121%西安邮电大学通信与信息工程学院,西安 710121
AuthorAffiliation_xml – name: 西安邮电大学通信与信息工程学院,西安 710121;西安市公共安全图像处理技术及应用重点实验室西安 710121%西安邮电大学通信与信息工程学院,西安 710121
Author_FL LIU Ying
LI Daxiang
ZHANG Wenkai
Author_FL_xml – sequence: 1
  fullname: LI Daxiang
– sequence: 2
  fullname: ZHANG Wenkai
– sequence: 3
  fullname: LIU Ying
Author_xml – sequence: 1
  fullname: 李大湘
– sequence: 2
  fullname: 张雯凯
– sequence: 3
  fullname: 刘颖
BookMark eNo9jz1Lw0Ach2-oYK39FA5Oif-7S3LJIkjxDQoudS6Xy11p0QvkEHX2rVBadRJ8iYOLKOggiH4fz8RvYURx-sEz_B6eGVTTqZYIzWFwMY6YvzBw-8ZoFwMQJwhx5BIgHvg4ZDVU_6fTqGlMP644ZQAerqPFMh_bs2En49qoNNuW2cfbxE5ubT4qTx6Kq_Pi5q64PCxH75_5tT19_Tq4Ly6O7NNL-Xxsh4-zaErxLSObf9tAmyvLndaa095YXW8ttR2DgWCH-hwEY4pSHnqJ5AIiLJNQKRkoISgAYC5CFUeBiglESexhnwlGBA2TWAYBbaD5399drhXXve4g3cl0Zezq_Z7Yi39qCa1U9BszsWGV
ClassificationCodes TP391.4%S431.9
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.202405187
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitle_FL Identifying apple leaf diseases by integrating transformer and prototype self-supervised learning
EndPage 216
ExternalDocumentID nygcxb202423021
GrantInformation_xml – fundername: (国家自然科学基金); (陕西省自然科学基金)
  funderid: (国家自然科学基金); (陕西省自然科学基金)
GroupedDBID -04
2B.
4A8
5XA
5XE
92G
92I
93N
ABDBF
ABJNI
ACGFO
ACGFS
ACUHS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CW9
EOJEC
FIJ
IPNFZ
OBODZ
PSX
RIG
TCJ
TGD
TUS
U1G
U5N
ID FETCH-LOGICAL-s1021-35a0c77f33a84deac091ed8ffe6fcc30001ac8fb96fb209db4157c72c38dbe663
ISSN 1002-6819
IngestDate Thu May 29 04:08:37 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 23
Keywords 病害
自监督学习
apple
苹果
计算机视觉
computer vision
Transformer编码器
diseases
self-supervised learning
transformer encoder
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1021-35a0c77f33a84deac091ed8ffe6fcc30001ac8fb96fb209db4157c72c38dbe663
PageCount 9
ParticipantIDs wanfang_journals_nygcxb202423021
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle 农业工程学报
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2024
Publisher 西安市公共安全图像处理技术及应用重点实验室西安 710121%西安邮电大学通信与信息工程学院,西安 710121
西安邮电大学通信与信息工程学院,西安 710121
Publisher_xml – name: 西安邮电大学通信与信息工程学院,西安 710121
– name: 西安市公共安全图像处理技术及应用重点实验室西安 710121%西安邮电大学通信与信息工程学院,西安 710121
SSID ssib051370041
ssj0041925
ssib001101065
ssib023167668
Score 2.4840825
Snippet TP391.4%S431.9; 为了缓解苹果叶部病害(apple leaf diseases,ALD)识别存在"类内差异大、类间差异小"的问题,该研究设计了一种融合 Transformer 与原型自监督(fusion...
SourceID wanfang
SourceType Aggregation Database
StartPage 208
Title 融合Transformer与原型自监督的苹果叶部病害识别
URI https://d.wanfangdata.com.cn/periodical/nygcxb202423021
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JaxRBFC7CBEQP4oo7AX0nmdh7V12Eqp5ugqB4SCC3MNXTHU8TyAKaq1sgGPUkuMSDF1HQgyD6fxxn_Be-V10z09lwuTTFq9dvqa-7Xr3mVTVjV3RYxrnw3KavvbgZRFw3RVB6Ta1dx-mUbtnW9EH_5q1oZi64MR_OTzRu16qW1lb1dL6-776S_0EVaYgr7ZL9B2RHQpGAbcQXr4gwXv8KY0g5iBR4C9IQhAOczw7XoYhEGoDiwFPqxKvIDBeyK7qPxyAlpDEIBcI1jRZI3zQk8MDwKFAC0ojuEomRk4GKIBXAfZDcMMfAQ-qSKSif7pIZ8MgwY1vVV7-GGBlRxjZUhBSFloQkShqNJAotiUgvl9g1fCaMIS3rkAxAxkRBAwUfs6C4BKRDJqJj0vhMrmZ1FjRMcGKRHlR_uh1--PCCXUUkxiEUmlkXuTA60FLPSEJiYhvK3cFDXdwMOY5iBYJP41cZTwMcG8yGjnLHOJgMjc6ISLokiIo5MAIF-UOQx2SDElYpQkQOoZzEUmSw1_irMZ20htEr3M8xQRKxXSlTYW2gR6AIUxsjDYIZSLf2mI0o6I9r3TgQXMTHjL-XHGhlLWBSRI24DXs2olYHcNmZw_Pr8dHhtaWWV22z3RvFRRyaME4qpkcqpukpwCBiV2g7j0nv3lvM72riwKSaTpaY9DDOOw02KVVLZeMUwaWvIKMY5tFJENE45Q5dn374MCoToyKJ0FRMWCMOsctDE68dbKDZAtgt293F2mp19hg7atPMKVnNGcfZxPqdE-yIXFy2R-0UJ9n1wfaT3rON2ozx49tWb-ttb3tz8PhD_9Xz_pt3_ZcPBpvff26_7j39-uv--_6Lh71PXwafH_U2Pp5ic1k6m8w07d9Umisu1WH5YdvJ47j0_TYPOrjewkyh6PCyLKIyz31K9to5L7WIShxG0dG4tI_z2Mt93tEFJianWaO71C3OsCm_g2lBnuehaFNFSYRzfYhpTqQLT-fa5WfZlPV-wc6WKwu78Dn3Z5bz7PD4tb_AGqvLa8VFzABW9SUL6m_2Prp2
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%9E%8D%E5%90%88Transformer%E4%B8%8E%E5%8E%9F%E5%9E%8B%E8%87%AA%E7%9B%91%E7%9D%A3%E7%9A%84%E8%8B%B9%E6%9E%9C%E5%8F%B6%E9%83%A8%E7%97%85%E5%AE%B3%E8%AF%86%E5%88%AB&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E6%9D%8E%E5%A4%A7%E6%B9%98&rft.au=%E5%BC%A0%E9%9B%AF%E5%87%AF&rft.au=%E5%88%98%E9%A2%96&rft.date=2024-12-01&rft.pub=%E8%A5%BF%E5%AE%89%E5%B8%82%E5%85%AC%E5%85%B1%E5%AE%89%E5%85%A8%E5%9B%BE%E5%83%8F%E5%A4%84%E7%90%86%E6%8A%80%E6%9C%AF%E5%8F%8A%E5%BA%94%E7%94%A8%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%E8%A5%BF%E5%AE%89+710121%25%E8%A5%BF%E5%AE%89%E9%82%AE%E7%94%B5%E5%A4%A7%E5%AD%A6%E9%80%9A%E4%BF%A1%E4%B8%8E%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E8%A5%BF%E5%AE%89+710121&rft.issn=1002-6819&rft.volume=40&rft.issue=23&rft.spage=208&rft.epage=216&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.202405187&rft.externalDocID=nygcxb202423021
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg