利用相关矩阵法优化光谱指数的冬油菜氮素营养诊断

S365%S127; 近年来高光谱技术由于无损和高效等优点成为了现代精准农业发展的必要手段方法.为实现冬油菜无损、快速的氮素盈亏诊断,该研究以连续两年(2022-2023年)不同覆盖及施氮处理下冬油菜蕾薹期采集的90份植物样品(地上部生物量和植株氮浓度)和高光谱实测数据为数据源,根据原始光谱和一阶微分(first-orderdifferential,FD)光谱与氮营养指数(nitrogen nutrition index,NNI)的相关系数计算了 8种(共16个)典型的光谱指数,随后利用相关矩阵法提取最佳光谱组合,并根据与NNI相关系数的计算结果筛选最优光谱指数,最后将最优光谱指数分为3组模型...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 39; no. 17; pp. 97 - 106
Main Authors 唐子竣, 向友珍, 王辛, 张威, 李志军, 张富仓, 陈俊英
Format Journal Article
LanguageChinese
Published 西北农林科技大学旱区节水农业研究院,杨凌712100 01.09.2023
西北农林科技大学旱区农业水土工程教育部重点实验室,杨凌 712100
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.202305096

Cover

Abstract S365%S127; 近年来高光谱技术由于无损和高效等优点成为了现代精准农业发展的必要手段方法.为实现冬油菜无损、快速的氮素盈亏诊断,该研究以连续两年(2022-2023年)不同覆盖及施氮处理下冬油菜蕾薹期采集的90份植物样品(地上部生物量和植株氮浓度)和高光谱实测数据为数据源,根据原始光谱和一阶微分(first-orderdifferential,FD)光谱与氮营养指数(nitrogen nutrition index,NNI)的相关系数计算了 8种(共16个)典型的光谱指数,随后利用相关矩阵法提取最佳光谱组合,并根据与NNI相关系数的计算结果筛选最优光谱指数,最后将最优光谱指数分为3组模型输入变量,分别采用支持向量机(support vector machine,SVM)、随机森林(random forest,RF)、极限学习机(extreme learning machine,ELM)和反向神经网络(back propagation neural network,BPNN)构建冬油菜蕾薹期 NNI 估算模型.结果表明一阶微分光谱指数与NNI的相关系数均大于原始光谱指数,3个组合选择的光谱指数与NNI的相关系数均较高且波长组合位置均在红边(670~760 nm)内,与NNI相关系数最高的光谱指数为FDSAVI,为0.674,波长组合位于712和678 nm;冬油菜NNI估算模型的最优输入变量与最优建模方法相结合建立的模型为组合2(输入变量为一阶微分光谱指数)与RF模型相结合,其中最优模型验证集的决定系数为0.823,均方根误差为0.079,平均相对误差为7.513%,表明模型精度较高,预测结果将为遥感技术在作物生产中植物氮素营养监测和诊断的潜在应用提供技术依据.
AbstractList S365%S127; 近年来高光谱技术由于无损和高效等优点成为了现代精准农业发展的必要手段方法.为实现冬油菜无损、快速的氮素盈亏诊断,该研究以连续两年(2022-2023年)不同覆盖及施氮处理下冬油菜蕾薹期采集的90份植物样品(地上部生物量和植株氮浓度)和高光谱实测数据为数据源,根据原始光谱和一阶微分(first-orderdifferential,FD)光谱与氮营养指数(nitrogen nutrition index,NNI)的相关系数计算了 8种(共16个)典型的光谱指数,随后利用相关矩阵法提取最佳光谱组合,并根据与NNI相关系数的计算结果筛选最优光谱指数,最后将最优光谱指数分为3组模型输入变量,分别采用支持向量机(support vector machine,SVM)、随机森林(random forest,RF)、极限学习机(extreme learning machine,ELM)和反向神经网络(back propagation neural network,BPNN)构建冬油菜蕾薹期 NNI 估算模型.结果表明一阶微分光谱指数与NNI的相关系数均大于原始光谱指数,3个组合选择的光谱指数与NNI的相关系数均较高且波长组合位置均在红边(670~760 nm)内,与NNI相关系数最高的光谱指数为FDSAVI,为0.674,波长组合位于712和678 nm;冬油菜NNI估算模型的最优输入变量与最优建模方法相结合建立的模型为组合2(输入变量为一阶微分光谱指数)与RF模型相结合,其中最优模型验证集的决定系数为0.823,均方根误差为0.079,平均相对误差为7.513%,表明模型精度较高,预测结果将为遥感技术在作物生产中植物氮素营养监测和诊断的潜在应用提供技术依据.
Abstract_FL Accurate and timely nitrogen status diagnosis is crucial for the nitrogen application management and yield prediction of winter rapeseed.Traditional,destructive manual measurement cannot fully meet the large-scale production in recent years,due to the tedious,time-consuming and laborious.Fortunately,the non-destructive and efficient hyperspectral technology can serve as the necessary means in modern precision agriculture.This study aims to realize the rapid and accurate diagnosis for the prediction of the nitrogen nutrition status of winter rapeseed.Data sources were collected from 90 plant samples(above-ground biomass and plant nitrogen concentration)and hyperspectral measured data at the bud stage of winter oilseed rape under different mulching and nitrogen application treatments for two consecutive years(2022-2023).Eight typical spectral indices(16 in total)were first calculated using the correlation coefficients between the original and the first-order differential(FD)spectrum and the nitrogen nutrition index(NNI).Secondly,the correlation matrix was used to extract the best spectral combination.The optimal spectral index was then selected from the correlation coefficient with NNI.Finally,the optimal spectral index was divided into three groups of input variables for the model(combination 1:the five original spectral indices;combination 2:the five first-order differential spectral indices;combination 3:the five spectral indices,with the highest correlation coefficient with NNI).Support vector machine(SVM),random forest(RF),extreme learning machine(ELM),and back propagation neural network(BPNN)were used to construct the NNI estimation model of winter oilseed rape.Determination coefficient(R2),root mean square error(RMSE),and mean relative error(MRE)were used to evaluate the accuracy of the model.The results show that the correlation coefficient between the first-order differential spectral index and NNI was greater than that of the original,indicating a better NNI prediction using the first-order differential spectral index.There were high correlation coefficients between the spectral indices selected by the three combinations and NNI.The wavelength combinations were located in the red edge(670-760 nm),indicating the NNI variation representing the characteristic information in the red edge.The FDSAVI spectral index shared the highest correlation coefficient(0.674)with NNI.Among them,the wavelength combination was located at 712 and 678 nm.An optimal combination of the RF model and combination 2 were achieved to combine the optimal input variables of the NNI estimation model.The R2 value,RMSE,and MRE on the validation set were 0.823,0.079,and 7.513%,respectively,indicating the high accuracy of the optimal model.The finding can provide a technical basis for the potential application of remote sensing for the monitoring and diagnosis of plant nitrogen nutrition.
Author 陈俊英
向友珍
张富仓
唐子竣
张威
李志军
王辛
AuthorAffiliation 西北农林科技大学旱区农业水土工程教育部重点实验室,杨凌 712100;西北农林科技大学旱区节水农业研究院,杨凌712100
AuthorAffiliation_xml – name: 西北农林科技大学旱区农业水土工程教育部重点实验室,杨凌 712100;西北农林科技大学旱区节水农业研究院,杨凌712100
Author_FL LI Zhijun
ZHANG Fucang
TANG Zijun
ZHANG Wei
CHEN Junying
XIANG Youzhen
WANG Xin
Author_FL_xml – sequence: 1
  fullname: TANG Zijun
– sequence: 2
  fullname: XIANG Youzhen
– sequence: 3
  fullname: WANG Xin
– sequence: 4
  fullname: ZHANG Wei
– sequence: 5
  fullname: LI Zhijun
– sequence: 6
  fullname: ZHANG Fucang
– sequence: 7
  fullname: CHEN Junying
Author_xml – sequence: 1
  fullname: 唐子竣
– sequence: 2
  fullname: 向友珍
– sequence: 3
  fullname: 王辛
– sequence: 4
  fullname: 张威
– sequence: 5
  fullname: 李志军
– sequence: 6
  fullname: 张富仓
– sequence: 7
  fullname: 陈俊英
BookMark eNo9j8tKw0AYhWdRwVr7FC5cJf7_zCQxSyn1AgU3ui6ZOFNaZAoOou6NNwq6sKWooBvBgpdoFRR9HHPxLawors7hW5yPM0EKuq0lIVMINqLvOTMtu2mMthGAWu4s-jYFysAB3y2Q4j8dJ2VjmgIcZB4AxyKpJgeD7PQmO39NomF2Ofjqv6TD7udHP-n0kugwjx_Tzn7ajbOz3WTvNn16y48v0vg-e77KT66T6D1_OEp7d5NkTAXrRpb_skRW56srlUWrtrywVJmrWQaBgiURVEgdKjCUAYaKjjqnSggEZFJS9F0BilHKuOSCo-e7yAPFJXruGkLISmT6d3cr0CrQjXqrvbmhR8a63mmE2-LnNHqAwL4BeM1pSg
ClassificationCodes S365%S127
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.202305096
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitle_FL Nitrogen nutrition diagnosis of winter oilseed rape using spectral indexes optimized by correlation matrix method
EndPage 106
ExternalDocumentID nygcxb202317010
GrantInformation_xml – fundername: 国家自然科学基金
  funderid: (52179045)
GroupedDBID -04
2B.
4A8
5XA
5XE
92G
92I
93N
ABDBF
ABJNI
ACGFO
ACGFS
ACUHS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CW9
EOJEC
FIJ
IPNFZ
OBODZ
PSX
RIG
TCJ
TGD
TUS
U1G
U5N
ID FETCH-LOGICAL-s1020-e10fc252b1cea1cf225242fbb1013ee2196b0f32234e4b4179614af4e176d10c3
ISSN 1002-6819
IngestDate Thu May 29 04:08:36 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 17
Keywords models
nitrogen nutrition index
模型
hyperspectral
winter oilseed rape
相关矩阵法
remote sensing
遥感
高光谱
冬油菜
氮营养指数
correlation matrix method
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1020-e10fc252b1cea1cf225242fbb1013ee2196b0f32234e4b4179614af4e176d10c3
PageCount 10
ParticipantIDs wanfang_journals_nygcxb202317010
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationTitle 农业工程学报
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2023
Publisher 西北农林科技大学旱区节水农业研究院,杨凌712100
西北农林科技大学旱区农业水土工程教育部重点实验室,杨凌 712100
Publisher_xml – name: 西北农林科技大学旱区农业水土工程教育部重点实验室,杨凌 712100
– name: 西北农林科技大学旱区节水农业研究院,杨凌712100
SSID ssib051370041
ssj0041925
ssib001101065
ssib023167668
Score 2.4866378
Snippet S365%S127; 近年来高光谱技术由于无损和高效等优点成为了现代精准农业发展的必要手段方法.为实现冬油菜无损、快速的氮素盈亏诊断,该研究以连续两年(2022-2023年)不同覆盖及...
SourceID wanfang
SourceType Aggregation Database
StartPage 97
Title 利用相关矩阵法优化光谱指数的冬油菜氮素营养诊断
URI https://d.wanfangdata.com.cn/periodical/nygcxb202317010
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBsMkDRA_iE98EtI8bp2d6-nHs3p0lCHpKILewMzsTTyskG9CcjS8CejAhqKAXwYCPaBQU_QQ_w334F1b1zO6OEvFxGYrq6urqqu6t6t6aGkIuBKmfSS6CSpIJr8LDJK0o1cwqaZLyZkMmoU7xvuPyFTEzxy_Nh_Nj419LWUsr7Xg6Wd3zvZL_sSrgwK74luw_WHbIFBAAg33hCRaG51_ZmEYhVYoaTSNJNadGOcBSq1xTSG3gMHVHo6lW1IY0EojXAHBqq4hEYgBE0UsBMVB61DIkhiYlEYAugESGhiruiAU1VcfQp9b1UnWqc4xHTYTEFgTzsEkDJhwIZhFj6lQZxxn41MqBcsEcWXGcDowIGCsdB4kzVRYxpkaNcEIaaBosH2wBfcCAOYl2UhtLTfATiUc1cyPVHTvpgNqIBBCRawFtRKDYcmfQnMn5gyysfHviB8P0sHy9u6lCj_pA0bI0PXhGDgMCSiePm4zKeXNElucJlJYVfKxxGgdiv9C45XspTqKkoA8ENLXCLQVNjQ8bzPGsuaUToplVVWK1N6_krdCdCVX4nMKd5bWhBttWlpxTnghdhDnMFXrYw4NqGToXiiNMD0eYRuW5WkGjwGGYztm6sZhcj5ECq_t742TSBx_rTZBJY2u2PgrPGd5ADP2Hj1UYxOi4G7IAP7YwTNHCBIXQZSsUQuwj5wciXvy9gO71u1bWaC2WIsXZQ-RgccSbMvl-PUzGVq8eIQfM4lJR5iY9SqLOne3ewxe9xx87a7u9p9vftz50dze-fdnqrG921u72d9521293N3Z6j252br3svvvUv_-ku_O69_5Z_8Hzztrn_pt73c1Xx8hcPZqtzlSKD5pUlhle06TMyxI_9GOWpA2WZOBLIULO4pjhnxEpBA8i9jJwsQFPeYzfBoTguZHxlEnRZF4SHCcTrWut9ASZCuOEsya4zIbyOZwatEhSL1NaNnysGChOkqlCCQvFD9bywi9mOvVnktNk_2jTnCET7aWV9CwE4e34XGHbH-g7pcQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%88%A9%E7%94%A8%E7%9B%B8%E5%85%B3%E7%9F%A9%E9%98%B5%E6%B3%95%E4%BC%98%E5%8C%96%E5%85%89%E8%B0%B1%E6%8C%87%E6%95%B0%E7%9A%84%E5%86%AC%E6%B2%B9%E8%8F%9C%E6%B0%AE%E7%B4%A0%E8%90%A5%E5%85%BB%E8%AF%8A%E6%96%AD&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%94%90%E5%AD%90%E7%AB%A3&rft.au=%E5%90%91%E5%8F%8B%E7%8F%8D&rft.au=%E7%8E%8B%E8%BE%9B&rft.au=%E5%BC%A0%E5%A8%81&rft.date=2023-09-01&rft.pub=%E8%A5%BF%E5%8C%97%E5%86%9C%E6%9E%97%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E6%97%B1%E5%8C%BA%E8%8A%82%E6%B0%B4%E5%86%9C%E4%B8%9A%E7%A0%94%E7%A9%B6%E9%99%A2%2C%E6%9D%A8%E5%87%8C712100&rft.issn=1002-6819&rft.volume=39&rft.issue=17&rft.spage=97&rft.epage=106&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.202305096&rft.externalDocID=nygcxb202317010
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg