改进DBSCAN的自动工作模态分析方法
O32; 为解决随机子空间法在模态参数识别过程中自动性差、虚假模态难以识别剔除等问题,提出一种新的模态参数辨识方法.采用协方差驱动的随机子空间法(Covariance-driven stochastic identification,SSI-COV)识别系统的模态参数;根据软硬准则初步剔除虚假模态并绘制三维稳定图;对基于密度的带噪声的空间聚类算法(Density-based spatial clustering algorithm with noise,DBSCAN)进行改进,自动确定敏感参数ε,并对候选模态进行聚类分析;对每一簇类模态,计算模态质量评价准则(Modal quality ass...
        Saved in:
      
    
          | Published in | 南京航空航天大学学报 Vol. 56; no. 4; pp. 677 - 686 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | Chinese | 
| Published | 
            南京航空航天大学航天学院,南京 211106%上海卫星装备研究所,上海 200240
    
        01.08.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1005-2615 | 
| DOI | 10.16356/j.1005-2615.2024.04.010 | 
Cover
| Abstract | O32; 为解决随机子空间法在模态参数识别过程中自动性差、虚假模态难以识别剔除等问题,提出一种新的模态参数辨识方法.采用协方差驱动的随机子空间法(Covariance-driven stochastic identification,SSI-COV)识别系统的模态参数;根据软硬准则初步剔除虚假模态并绘制三维稳定图;对基于密度的带噪声的空间聚类算法(Density-based spatial clustering algorithm with noise,DBSCAN)进行改进,自动确定敏感参数ε,并对候选模态进行聚类分析;对每一簇类模态,计算模态质量评价准则(Modal quality assessment criterion,MQAC),制定筛选准则,自动剔除虚假模态并识别真实模态.利用本文方法对桁架结构、广州塔、Z24桥实例进行模态参数识别验证,结果表明该方法可实现典型工程结构的自动工作模态分析,可有效剔除非白噪声激励及测量噪声导致的虚假模态. | 
    
|---|---|
| AbstractList | O32; 为解决随机子空间法在模态参数识别过程中自动性差、虚假模态难以识别剔除等问题,提出一种新的模态参数辨识方法.采用协方差驱动的随机子空间法(Covariance-driven stochastic identification,SSI-COV)识别系统的模态参数;根据软硬准则初步剔除虚假模态并绘制三维稳定图;对基于密度的带噪声的空间聚类算法(Density-based spatial clustering algorithm with noise,DBSCAN)进行改进,自动确定敏感参数ε,并对候选模态进行聚类分析;对每一簇类模态,计算模态质量评价准则(Modal quality assessment criterion,MQAC),制定筛选准则,自动剔除虚假模态并识别真实模态.利用本文方法对桁架结构、广州塔、Z24桥实例进行模态参数识别验证,结果表明该方法可实现典型工程结构的自动工作模态分析,可有效剔除非白噪声激励及测量噪声导致的虚假模态. | 
    
| Abstract_FL | In order to solve the problems of poor automaticity and difficult identification and elimination of spurious modes by covariance-driven stochastic subspace method,a new modal parameter identification method is proposed.Firstly,the covariance-driven stochastic subspace method is used to identify the modal parameters of the system.Secondly,according to the soft and hard criteria,the spurious modes are preliminarily eliminated and the 3D stabilization diagram is drawn.Then,the density-based spatial clustering algorithm with noise(DBSCAN)is improved,the sensitive parameter ε is automatically determined,and the candidate modes are clustered and analyzed.For each cluster of modalities,the modal quality assessment criterion(MQAC)is calculated,and a screening standard is formulated to determine the true modes of the system.Finally,the proposed method is used to verify the modal parameter identification of truss structure,Guangzhou Tower and Z24 bridge examples,The results indicate that this method can achieve autonomous modal analysis of typical engineering structures and effectively eliminate false modes caused by non-white noise excitation and measurement noise. | 
    
| Author | 康杰 刘晓腾 孙嘉宝 董自瑞 罗杰 季红侠  | 
    
| AuthorAffiliation | 南京航空航天大学航天学院,南京 211106%上海卫星装备研究所,上海 200240 | 
    
| AuthorAffiliation_xml | – name: 南京航空航天大学航天学院,南京 211106%上海卫星装备研究所,上海 200240 | 
    
| Author_FL | JI Hongxia LUO Jie KANG Jie LIU Xiaoteng DONG Zirui SUN Jiabao  | 
    
| Author_FL_xml | – sequence: 1 fullname: SUN Jiabao – sequence: 2 fullname: KANG Jie – sequence: 3 fullname: DONG Zirui – sequence: 4 fullname: JI Hongxia – sequence: 5 fullname: LUO Jie – sequence: 6 fullname: LIU Xiaoteng  | 
    
| Author_xml | – sequence: 1 fullname: 孙嘉宝 – sequence: 2 fullname: 康杰 – sequence: 3 fullname: 董自瑞 – sequence: 4 fullname: 季红侠 – sequence: 5 fullname: 罗杰 – sequence: 6 fullname: 刘晓腾  | 
    
| BookMark | eNrjYmDJy89LZWBQMDTQMzQzNjXTz9IzNDAw1TUyMzTVMzIwMtEzACJDAxYGTrg4BwNvcXFmkoGBoaGRpZGBISeD7rMpO1_sn-3iFOzs6Pd8VsuL9lVPu1Y83b70yd45z1YsfNbQ-LSj7dm8Cc-m7Xy2eSoPA2taYk5xKi-U5mYIdXMNcfbQ9fF393R29NEtNjQwMtC1MEs0TE5MNkwySUuxSE22SDY1M09JMTKzTEsyTDQxMjNKMbM0MbYwSrIwMbAwNUhOSU01Nk9NSjJPNUo2MjGwNOZmUIeYW56Yl5aYlx6flV9alAe0MT4vKyM7owTkPQMToOeMAeDMVEQ | 
    
| ClassificationCodes | O32 | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| DBID | 2B. 4A8 92I 93N PSX TCJ  | 
    
| DOI | 10.16356/j.1005-2615.2024.04.010 | 
    
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ)  | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| DocumentTitle_FL | Improved DBSCAN for Automated Operational Modal Analysis Method | 
    
| EndPage | 686 | 
    
| ExternalDocumentID | njhkht202404010 | 
    
| GrantInformation_xml | – fundername: 航空航天结构力学; (控制全国重点实验室青年学生项目); (国家自然科学基金); (南京航空航天大学新教师工作启动基金) funderid: 航空航天结构力学; (控制全国重点实验室青年学生项目); (国家自然科学基金); (南京航空航天大学新教师工作启动基金)  | 
    
| GroupedDBID | -03 2B. 4A8 92H 92I 93N ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CEKLB CW9 GROUPED_DOAJ PSX TCJ TGT TN5 U1G U5M  | 
    
| ID | FETCH-LOGICAL-s1020-86a1cac1b4fd8ec8c567dd269fb1a4262d694382b840850cdee37ebb7e2c24093 | 
    
| ISSN | 1005-2615 | 
    
| IngestDate | Thu May 29 04:00:30 EDT 2025 | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | 虚假模态 DBSCAN algorithm DBSCAN算法 3D stabilization diagram operational modal(OMA) 工作模态分析 stochastic subspace identification spurious mode 随机子空间法 三维稳定图  | 
    
| Language | Chinese | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-s1020-86a1cac1b4fd8ec8c567dd269fb1a4262d694382b840850cdee37ebb7e2c24093 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | wanfang_journals_njhkht202404010 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-08-01 | 
    
| PublicationDateYYYYMMDD | 2024-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | 南京航空航天大学学报 | 
    
| PublicationTitle_FL | Journal of Nanjing University of Aeronautics & Astronautics | 
    
| PublicationYear | 2024 | 
    
| Publisher | 南京航空航天大学航天学院,南京 211106%上海卫星装备研究所,上海 200240 | 
    
| Publisher_xml | – name: 南京航空航天大学航天学院,南京 211106%上海卫星装备研究所,上海 200240 | 
    
| SSID | ssib001129201 ssib051370533 ssib009282312 ssib020892855 ssib023167634 ssj0040328  | 
    
| Score | 2.4259942 | 
    
| Snippet | O32; 为解决随机子空间法在模态参数识别过程中自动性差、虚假模态难以识别剔除等问题,提出一种新的模态参数辨识方法.采用协方差驱动的随机子空间法(Covariance-driven... | 
    
| SourceID | wanfang | 
    
| SourceType | Aggregation Database | 
    
| StartPage | 677 | 
    
| Title | 改进DBSCAN的自动工作模态分析方法 | 
    
| URI | https://d.wanfangdata.com.cn/periodical/njhkht202404010 | 
    
| Volume | 56 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1005-2615 databaseCode: DOA dateStart: 20230101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0040328 providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text issn: 1005-2615 databaseCode: ADMLS dateStart: 20120201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text omitProxy: false ssIdentifier: ssib020892855 providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR27bhQx0AqXBgrEUzyjK3CFNuzu7fpReu_2FCGSJomULtqHjwikQyKXJhVICBAVBVAAQqJAimgpUArEz3BLPoMZ23e7XIJ4iGZlzY5nxjP2zcyePSbkGkTEcV4w7WV54XuR7gReHpalx6KC8UBrSFzwNPLyCltaj25uxBtzx6rGrqWdUb5Y7B55ruRfrAowsCuekv0Ly06JAgDaYF94goXh-Uc2pimjMqKJpKmgSZ_KpJesdtUKTTmViooI4ZDtK0XTmApFlcBGApCYptCxR2UXiQBcBdgQPoSWBhk6MkM_pdI3DWYYwbND7Y2Vk6DW4AMpbmgCl67hKwxf4CURWENiqiIEugY3jR5VrNFgRtp4Mh3cG2k6SaBke4NovSYKsIGxoaw9mvj1G0FlQFWnoQ2OEJnO0EcUbkYQmqGkVPnNzyJhNN2UZyfy_xv5kTj2lcRxg0Rh9zC765BZQ7pNQ2tPgWpDExkjW2yVGI2ADvrIBsYoYscGlIFS-jiJnLhW9xInAvKbpYkVKENb-cq5MqwxC_lx3PR1toi7W9NRw3Exd5mOjYGYLU9-yL1iMUPrXyfEF1H3pliw2538c_Hy4Z2tu1sjxAFngSch50Pwvn6LzKve8q3VOnAP8Na02tPIEP-engbeoS8AUp-gDrF-A6sLG8ZBh_smcbExWIRVIs0-Byem28OH8t_4hfTm1N5wkA1vNwLMtVPkpMsM28ou89NkbnfrDDnRqBd6lnjVi_2Dr2_sIv_--tHBk4_jZ3vjzx--fXlb7b2vHjwcP31cvXtevdqvPr08R9b76Vp3yXP3nXjbAX7FESwLiqwI8mhQCl2IIma8LEMmB3mQ4c0RJZP4v30usCyhX5Rad7jOc67DAhQsO-dJa3hvqC-QthYDnnPI7bRfRFmZCRlzjpWdmF9gKeqLpO0Gu-l-z7Y3Z2x16fcol8nxeuldIa3R_R19FWL0Ub7gDLxgvnH9AOPbnlo | 
    
| linkProvider | EBSCOhost | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%94%B9%E8%BF%9BDBSCAN%E7%9A%84%E8%87%AA%E5%8A%A8%E5%B7%A5%E4%BD%9C%E6%A8%A1%E6%80%81%E5%88%86%E6%9E%90%E6%96%B9%E6%B3%95&rft.jtitle=%E5%8D%97%E4%BA%AC%E8%88%AA%E7%A9%BA%E8%88%AA%E5%A4%A9%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E5%AD%99%E5%98%89%E5%AE%9D&rft.au=%E5%BA%B7%E6%9D%B0&rft.au=%E8%91%A3%E8%87%AA%E7%91%9E&rft.au=%E5%AD%A3%E7%BA%A2%E4%BE%A0&rft.date=2024-08-01&rft.pub=%E5%8D%97%E4%BA%AC%E8%88%AA%E7%A9%BA%E8%88%AA%E5%A4%A9%E5%A4%A7%E5%AD%A6%E8%88%AA%E5%A4%A9%E5%AD%A6%E9%99%A2%2C%E5%8D%97%E4%BA%AC+211106%25%E4%B8%8A%E6%B5%B7%E5%8D%AB%E6%98%9F%E8%A3%85%E5%A4%87%E7%A0%94%E7%A9%B6%E6%89%80%2C%E4%B8%8A%E6%B5%B7+200240&rft.issn=1005-2615&rft.volume=56&rft.issue=4&rft.spage=677&rft.epage=686&rft_id=info:doi/10.16356%2Fj.1005-2615.2024.04.010&rft.externalDocID=njhkht202404010 | 
    
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnjhkht%2Fnjhkht.jpg |