改进DBSCAN的自动工作模态分析方法

O32; 为解决随机子空间法在模态参数识别过程中自动性差、虚假模态难以识别剔除等问题,提出一种新的模态参数辨识方法.采用协方差驱动的随机子空间法(Covariance-driven stochastic identification,SSI-COV)识别系统的模态参数;根据软硬准则初步剔除虚假模态并绘制三维稳定图;对基于密度的带噪声的空间聚类算法(Density-based spatial clustering algorithm with noise,DBSCAN)进行改进,自动确定敏感参数ε,并对候选模态进行聚类分析;对每一簇类模态,计算模态质量评价准则(Modal quality ass...

Full description

Saved in:
Bibliographic Details
Published in南京航空航天大学学报 Vol. 56; no. 4; pp. 677 - 686
Main Authors 孙嘉宝, 康杰, 董自瑞, 季红侠, 罗杰, 刘晓腾
Format Journal Article
LanguageChinese
Published 南京航空航天大学航天学院,南京 211106%上海卫星装备研究所,上海 200240 01.08.2024
Subjects
Online AccessGet full text
ISSN1005-2615
DOI10.16356/j.1005-2615.2024.04.010

Cover

Abstract O32; 为解决随机子空间法在模态参数识别过程中自动性差、虚假模态难以识别剔除等问题,提出一种新的模态参数辨识方法.采用协方差驱动的随机子空间法(Covariance-driven stochastic identification,SSI-COV)识别系统的模态参数;根据软硬准则初步剔除虚假模态并绘制三维稳定图;对基于密度的带噪声的空间聚类算法(Density-based spatial clustering algorithm with noise,DBSCAN)进行改进,自动确定敏感参数ε,并对候选模态进行聚类分析;对每一簇类模态,计算模态质量评价准则(Modal quality assessment criterion,MQAC),制定筛选准则,自动剔除虚假模态并识别真实模态.利用本文方法对桁架结构、广州塔、Z24桥实例进行模态参数识别验证,结果表明该方法可实现典型工程结构的自动工作模态分析,可有效剔除非白噪声激励及测量噪声导致的虚假模态.
AbstractList O32; 为解决随机子空间法在模态参数识别过程中自动性差、虚假模态难以识别剔除等问题,提出一种新的模态参数辨识方法.采用协方差驱动的随机子空间法(Covariance-driven stochastic identification,SSI-COV)识别系统的模态参数;根据软硬准则初步剔除虚假模态并绘制三维稳定图;对基于密度的带噪声的空间聚类算法(Density-based spatial clustering algorithm with noise,DBSCAN)进行改进,自动确定敏感参数ε,并对候选模态进行聚类分析;对每一簇类模态,计算模态质量评价准则(Modal quality assessment criterion,MQAC),制定筛选准则,自动剔除虚假模态并识别真实模态.利用本文方法对桁架结构、广州塔、Z24桥实例进行模态参数识别验证,结果表明该方法可实现典型工程结构的自动工作模态分析,可有效剔除非白噪声激励及测量噪声导致的虚假模态.
Abstract_FL In order to solve the problems of poor automaticity and difficult identification and elimination of spurious modes by covariance-driven stochastic subspace method,a new modal parameter identification method is proposed.Firstly,the covariance-driven stochastic subspace method is used to identify the modal parameters of the system.Secondly,according to the soft and hard criteria,the spurious modes are preliminarily eliminated and the 3D stabilization diagram is drawn.Then,the density-based spatial clustering algorithm with noise(DBSCAN)is improved,the sensitive parameter ε is automatically determined,and the candidate modes are clustered and analyzed.For each cluster of modalities,the modal quality assessment criterion(MQAC)is calculated,and a screening standard is formulated to determine the true modes of the system.Finally,the proposed method is used to verify the modal parameter identification of truss structure,Guangzhou Tower and Z24 bridge examples,The results indicate that this method can achieve autonomous modal analysis of typical engineering structures and effectively eliminate false modes caused by non-white noise excitation and measurement noise.
Author 康杰
刘晓腾
孙嘉宝
董自瑞
罗杰
季红侠
AuthorAffiliation 南京航空航天大学航天学院,南京 211106%上海卫星装备研究所,上海 200240
AuthorAffiliation_xml – name: 南京航空航天大学航天学院,南京 211106%上海卫星装备研究所,上海 200240
Author_FL JI Hongxia
LUO Jie
KANG Jie
LIU Xiaoteng
DONG Zirui
SUN Jiabao
Author_FL_xml – sequence: 1
  fullname: SUN Jiabao
– sequence: 2
  fullname: KANG Jie
– sequence: 3
  fullname: DONG Zirui
– sequence: 4
  fullname: JI Hongxia
– sequence: 5
  fullname: LUO Jie
– sequence: 6
  fullname: LIU Xiaoteng
Author_xml – sequence: 1
  fullname: 孙嘉宝
– sequence: 2
  fullname: 康杰
– sequence: 3
  fullname: 董自瑞
– sequence: 4
  fullname: 季红侠
– sequence: 5
  fullname: 罗杰
– sequence: 6
  fullname: 刘晓腾
BookMark eNrjYmDJy89LZWBQMDTQMzQzNjXTz9IzNDAw1TUyMzTVMzIwMtEzACJDAxYGTrg4BwNvcXFmkoGBoaGRpZGBISeD7rMpO1_sn-3iFOzs6Pd8VsuL9lVPu1Y83b70yd45z1YsfNbQ-LSj7dm8Cc-m7Xy2eSoPA2taYk5xKi-U5mYIdXMNcfbQ9fF393R29NEtNjQwMtC1MEs0TE5MNkwySUuxSE22SDY1M09JMTKzTEsyTDQxMjNKMbM0MbYwSrIwMbAwNUhOSU01Nk9NSjJPNUo2MjGwNOZmUIeYW56Yl5aYlx6flV9alAe0MT4vKyM7owTkPQMToOeMAeDMVEQ
ClassificationCodes O32
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16356/j.1005-2615.2024.04.010
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Improved DBSCAN for Automated Operational Modal Analysis Method
EndPage 686
ExternalDocumentID njhkht202404010
GrantInformation_xml – fundername: 航空航天结构力学; (控制全国重点实验室青年学生项目); (国家自然科学基金); (南京航空航天大学新教师工作启动基金)
  funderid: 航空航天结构力学; (控制全国重点实验室青年学生项目); (国家自然科学基金); (南京航空航天大学新教师工作启动基金)
GroupedDBID -03
2B.
4A8
92H
92I
93N
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
CW9
GROUPED_DOAJ
PSX
TCJ
TGT
TN5
U1G
U5M
ID FETCH-LOGICAL-s1020-86a1cac1b4fd8ec8c567dd269fb1a4262d694382b840850cdee37ebb7e2c24093
ISSN 1005-2615
IngestDate Thu May 29 04:00:30 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords 虚假模态
DBSCAN algorithm
DBSCAN算法
3D stabilization diagram
operational modal(OMA)
工作模态分析
stochastic subspace identification
spurious mode
随机子空间法
三维稳定图
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1020-86a1cac1b4fd8ec8c567dd269fb1a4262d694382b840850cdee37ebb7e2c24093
PageCount 10
ParticipantIDs wanfang_journals_njhkht202404010
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationTitle 南京航空航天大学学报
PublicationTitle_FL Journal of Nanjing University of Aeronautics & Astronautics
PublicationYear 2024
Publisher 南京航空航天大学航天学院,南京 211106%上海卫星装备研究所,上海 200240
Publisher_xml – name: 南京航空航天大学航天学院,南京 211106%上海卫星装备研究所,上海 200240
SSID ssib001129201
ssib051370533
ssib009282312
ssib020892855
ssib023167634
ssj0040328
Score 2.4259942
Snippet O32; 为解决随机子空间法在模态参数识别过程中自动性差、虚假模态难以识别剔除等问题,提出一种新的模态参数辨识方法.采用协方差驱动的随机子空间法(Covariance-driven...
SourceID wanfang
SourceType Aggregation Database
StartPage 677
Title 改进DBSCAN的自动工作模态分析方法
URI https://d.wanfangdata.com.cn/periodical/njhkht202404010
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1005-2615
  databaseCode: DOA
  dateStart: 20230101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0040328
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1005-2615
  databaseCode: ADMLS
  dateStart: 20120201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib020892855
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR27bhQx0AqXBgrEUzyjK3CFNuzu7fpReu_2FCGSJomULtqHjwikQyKXJhVICBAVBVAAQqJAimgpUArEz3BLPoMZ23e7XIJ4iGZlzY5nxjP2zcyePSbkGkTEcV4w7WV54XuR7gReHpalx6KC8UBrSFzwNPLyCltaj25uxBtzx6rGrqWdUb5Y7B55ruRfrAowsCuekv0Ly06JAgDaYF94goXh-Uc2pimjMqKJpKmgSZ_KpJesdtUKTTmViooI4ZDtK0XTmApFlcBGApCYptCxR2UXiQBcBdgQPoSWBhk6MkM_pdI3DWYYwbND7Y2Vk6DW4AMpbmgCl67hKwxf4CURWENiqiIEugY3jR5VrNFgRtp4Mh3cG2k6SaBke4NovSYKsIGxoaw9mvj1G0FlQFWnoQ2OEJnO0EcUbkYQmqGkVPnNzyJhNN2UZyfy_xv5kTj2lcRxg0Rh9zC765BZQ7pNQ2tPgWpDExkjW2yVGI2ADvrIBsYoYscGlIFS-jiJnLhW9xInAvKbpYkVKENb-cq5MqwxC_lx3PR1toi7W9NRw3Exd5mOjYGYLU9-yL1iMUPrXyfEF1H3pliw2538c_Hy4Z2tu1sjxAFngSch50Pwvn6LzKve8q3VOnAP8Na02tPIEP-engbeoS8AUp-gDrF-A6sLG8ZBh_smcbExWIRVIs0-Byem28OH8t_4hfTm1N5wkA1vNwLMtVPkpMsM28ou89NkbnfrDDnRqBd6lnjVi_2Dr2_sIv_--tHBk4_jZ3vjzx--fXlb7b2vHjwcP31cvXtevdqvPr08R9b76Vp3yXP3nXjbAX7FESwLiqwI8mhQCl2IIma8LEMmB3mQ4c0RJZP4v30usCyhX5Rad7jOc67DAhQsO-dJa3hvqC-QthYDnnPI7bRfRFmZCRlzjpWdmF9gKeqLpO0Gu-l-z7Y3Z2x16fcol8nxeuldIa3R_R19FWL0Ub7gDLxgvnH9AOPbnlo
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%94%B9%E8%BF%9BDBSCAN%E7%9A%84%E8%87%AA%E5%8A%A8%E5%B7%A5%E4%BD%9C%E6%A8%A1%E6%80%81%E5%88%86%E6%9E%90%E6%96%B9%E6%B3%95&rft.jtitle=%E5%8D%97%E4%BA%AC%E8%88%AA%E7%A9%BA%E8%88%AA%E5%A4%A9%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5&rft.au=%E5%AD%99%E5%98%89%E5%AE%9D&rft.au=%E5%BA%B7%E6%9D%B0&rft.au=%E8%91%A3%E8%87%AA%E7%91%9E&rft.au=%E5%AD%A3%E7%BA%A2%E4%BE%A0&rft.date=2024-08-01&rft.pub=%E5%8D%97%E4%BA%AC%E8%88%AA%E7%A9%BA%E8%88%AA%E5%A4%A9%E5%A4%A7%E5%AD%A6%E8%88%AA%E5%A4%A9%E5%AD%A6%E9%99%A2%2C%E5%8D%97%E4%BA%AC+211106%25%E4%B8%8A%E6%B5%B7%E5%8D%AB%E6%98%9F%E8%A3%85%E5%A4%87%E7%A0%94%E7%A9%B6%E6%89%80%2C%E4%B8%8A%E6%B5%B7+200240&rft.issn=1005-2615&rft.volume=56&rft.issue=4&rft.spage=677&rft.epage=686&rft_id=info:doi/10.16356%2Fj.1005-2615.2024.04.010&rft.externalDocID=njhkht202404010
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnjhkht%2Fnjhkht.jpg