水稻高温热害强度时空变化特征与预报模型构建

S162.5%S2; 构建定量表征水稻高温热害强度的指数,揭示时空变化特征,并建立中长期预报模型,准确预报高温热害发生的强度趋势对提前部署抗高温工作至关重要.该研究充分考虑高温热害累积效应,结合致灾指标,构建了强度指数,并采用Fisher分割法对其进行了客观化分级;根据中长期天气预报原理,基于海温和大气环流指数两类预报因子,利用二维寻优技术,分别构建了水稻高温热害强度指数预报模型,并进行了验证和比较.结果表明:1)2010年以来江苏省水稻高温热害年频次增加且强度明显增强,其中2013年、2022年高温热害强度均达最高等级4级,高温热害强度指数存在明显的年代际差异,从20世纪90年代开始江苏省水...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 40; no. 10; pp. 97 - 106
Main Authors 徐敏, 徐经纬, 徐萌, 徐忆菲
Format Journal Article
LanguageChinese
Published 江苏省气候中心,南京 210019%南京信息工程大学大气科学学院,南京 210044%江苏省气候中心,南京 210019 01.05.2024
金坛国家气候观象台,金坛 213200
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.202403101

Cover

Abstract S162.5%S2; 构建定量表征水稻高温热害强度的指数,揭示时空变化特征,并建立中长期预报模型,准确预报高温热害发生的强度趋势对提前部署抗高温工作至关重要.该研究充分考虑高温热害累积效应,结合致灾指标,构建了强度指数,并采用Fisher分割法对其进行了客观化分级;根据中长期天气预报原理,基于海温和大气环流指数两类预报因子,利用二维寻优技术,分别构建了水稻高温热害强度指数预报模型,并进行了验证和比较.结果表明:1)2010年以来江苏省水稻高温热害年频次增加且强度明显增强,其中2013年、2022年高温热害强度均达最高等级4级,高温热害强度指数存在明显的年代际差异,从20世纪90年代开始江苏省水稻高温热害强度逐年代增强,空间上呈现出高温热害强度指数年代累加值不低于10的区域从南向北随年代逐步扩大,至21世纪10年代己扩展至淮北西部,其中淮河以南水稻高温热害强度增强明显,为历年代最强.2)构建的两类水稻高温热害强度指数预报模型可在7月初进行预报,预报提前量均为1~2个月,总体都能较好地模拟出强度指数的年际波动特征,但模拟值波动幅度与实际值存在不同程度的差异.3)通过拟合检验和试报检验,预报因子经过最优化相关技术处理后,能有效增加因变量和自变量的相关度,提高预报模型的模拟效果,其中海温因子经最优化处理后的高温热害强度指数预报模型效果最佳,可在农业气象业务服务中进行应用.研究结果对主动防御高温灾害和保障粮食安全具有重要科学意义和参考价值.
AbstractList S162.5%S2; 构建定量表征水稻高温热害强度的指数,揭示时空变化特征,并建立中长期预报模型,准确预报高温热害发生的强度趋势对提前部署抗高温工作至关重要.该研究充分考虑高温热害累积效应,结合致灾指标,构建了强度指数,并采用Fisher分割法对其进行了客观化分级;根据中长期天气预报原理,基于海温和大气环流指数两类预报因子,利用二维寻优技术,分别构建了水稻高温热害强度指数预报模型,并进行了验证和比较.结果表明:1)2010年以来江苏省水稻高温热害年频次增加且强度明显增强,其中2013年、2022年高温热害强度均达最高等级4级,高温热害强度指数存在明显的年代际差异,从20世纪90年代开始江苏省水稻高温热害强度逐年代增强,空间上呈现出高温热害强度指数年代累加值不低于10的区域从南向北随年代逐步扩大,至21世纪10年代己扩展至淮北西部,其中淮河以南水稻高温热害强度增强明显,为历年代最强.2)构建的两类水稻高温热害强度指数预报模型可在7月初进行预报,预报提前量均为1~2个月,总体都能较好地模拟出强度指数的年际波动特征,但模拟值波动幅度与实际值存在不同程度的差异.3)通过拟合检验和试报检验,预报因子经过最优化相关技术处理后,能有效增加因变量和自变量的相关度,提高预报模型的模拟效果,其中海温因子经最优化处理后的高温热害强度指数预报模型效果最佳,可在农业气象业务服务中进行应用.研究结果对主动防御高温灾害和保障粮食安全具有重要科学意义和参考价值.
Abstract_FL An evaluation index is crucial to quantitatively represent the intensity of high-temperature heat damage in rice.A medium and long-term forecasting model can be established to accurately forecast the trend of high-temperature heat damage,and then deploy heat-resistance measures in advance.In this research,spatiotemporal evolution was used to fully consider the cumulative effects of heat damage.The disaster indicators were combined to build an intensity index,and then objectively grade using the Fisher partition.According to medium and long-term weather forecasting,two types of forecasting factors were selected as the sea surface temperature(SST)and atmospheric circulation indices.The forecasting models were finally constructed and then validated for the index of high-temperature heat damage intensity using two-dimensional optimization.The results show that:1)There was a significant increase in the annual frequency and intensity of high-temperature events and heat damage on the rice crops since 2010.Notably,the intensity of high temperature and heat damage reached the highest grade 4 in 2013 and 2022.While it was only in grade 3 in 2016,2017,and even as far back as 1992.There was a significant inter-decadal difference in the heat damage intensity index.There was an increase in the intensity of rice high-temperature heat damage in the province each year since the 1990s.In spatial patterns,the areas with a cumulative value in the heat damage intensity index of ≥10 were gradually expanded from south to north,extending to the west of Huai Bei in the 2010s.A significant increase was found in the intensity of heat damage south of the Huai River,indicating the strongest in history.2)The prediction models were constructed for two kinds of high-temperature heat damage intensity index in early July using Pacific SST and 88 atmospheric circulation indexes.At the same time,Jiangsu rice had just been transplanted,and there were still 1-2 months before the stage of rice joining and heading.The forecast lead was 1-2 months after the fitting and trial test.The forecast models generally simulated the interannual fluctuation of the intensity index.But there was some variation in the amplitude difference between the simulated and actual values.3)The optimal correlation between the dependent and independent variables was carried out to optimize the forecasting factors after comparison,leading to effectively improv the simulation of the forecasting model.Among them,the best performance was achieved in the forecasting model of sea temperature factors for the high-temperature heat damage intensity index after optimization.The findings have important scientific significance and reference to defend against high-temperature disasters in agricultural meteorological services for food security.
Author 徐萌
徐经纬
徐敏
徐忆菲
AuthorAffiliation 江苏省气候中心,南京 210019%南京信息工程大学大气科学学院,南京 210044%江苏省气候中心,南京 210019;金坛国家气候观象台,金坛 213200
AuthorAffiliation_xml – name: 江苏省气候中心,南京 210019%南京信息工程大学大气科学学院,南京 210044%江苏省气候中心,南京 210019;金坛国家气候观象台,金坛 213200
Author_FL XU Min
XU Meng
XU Yifei
XU Jingwei
Author_FL_xml – sequence: 1
  fullname: XU Min
– sequence: 2
  fullname: XU Jingwei
– sequence: 3
  fullname: XU Meng
– sequence: 4
  fullname: XU Yifei
Author_xml – sequence: 1
  fullname: 徐敏
– sequence: 2
  fullname: 徐经纬
– sequence: 3
  fullname: 徐萌
– sequence: 4
  fullname: 徐忆菲
BookMark eNo9j8tKw0AYhWdRwVr7FC5cJf7_zCSZrESKNyi40XWZxKS0yBQcRF2K3XhBd9pVQUFpEUVQpKbi0zgT-hZGFFcHDofv8M2QkuqohJA5BBcxDLyFttvSWrkIQB1fYOhSoBwYApZI-b-dJlWtWxF4yAIAjmWyaJ9f88F48tCzo2F-_GieXsxHZrJ7e_2WDzNz2TPnV_nJu_k8-hpdTG679vTODm5M_8z2u2aczZKpVO7opPqXFbK1srxZW3PqG6vrtaW6oxEoOL4MUowDHgJPBUOGPhVeLEIGuM1BxhwiyophkoiApjRk0qeURrFkIqUSE1Yh87_cfalSqZqNdmdvVxWPDXXYjA-iH91CE4F9A81kZQg
ClassificationCodes S162.5%S2
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.202403101
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitle_FL Spatiotemporal variation characteristics and forecast model construction of high-temperature heat damage intensity in rice
EndPage 106
ExternalDocumentID nygcxb202410010
GrantInformation_xml – fundername: (江苏省气象局揭榜挂帅项目); (中国气象局创新发展专项)
  funderid: (江苏省气象局揭榜挂帅项目); (中国气象局创新发展专项)
GroupedDBID -04
2B.
4A8
5XA
5XE
92G
92I
93N
ABDBF
ABJNI
ACGFO
ACGFS
ACUHS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CW9
EOJEC
FIJ
IPNFZ
OBODZ
PSX
RIG
TCJ
TGD
TUS
U1G
U5N
ID FETCH-LOGICAL-s1020-6a7f1c74904f831316285c89301d40ac40b23020ee872f293a6222bca38f2a1e3
ISSN 1002-6819
IngestDate Thu May 29 04:08:36 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 10
Keywords intensity index
two-dimensional optimisation
rice high-temperature heat damage
预报
大气环流指数
SST
二维寻优
forecast
atmospheric circulation indices
强度指数
水稻高温热害
海温
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1020-6a7f1c74904f831316285c89301d40ac40b23020ee872f293a6222bca38f2a1e3
PageCount 10
ParticipantIDs wanfang_journals_nygcxb202410010
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationTitle 农业工程学报
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2024
Publisher 江苏省气候中心,南京 210019%南京信息工程大学大气科学学院,南京 210044%江苏省气候中心,南京 210019
金坛国家气候观象台,金坛 213200
Publisher_xml – name: 金坛国家气候观象台,金坛 213200
– name: 江苏省气候中心,南京 210019%南京信息工程大学大气科学学院,南京 210044%江苏省气候中心,南京 210019
SSID ssib051370041
ssj0041925
ssib001101065
ssib023167668
Score 2.4635432
Snippet S162.5%S2; 构建定量表征水稻高温热害强度的指数,揭示时空变化特征,并建立中长期预报模型,准确预报高温热害发生的强度趋势对提前部署抗高温工作至关重要.该研究充分考虑高...
SourceID wanfang
SourceType Aggregation Database
StartPage 97
Title 水稻高温热害强度时空变化特征与预报模型构建
URI https://d.wanfangdata.com.cn/periodical/nygcxb202410010
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1002-6819
  databaseCode: ABDBF
  dateStart: 20140101
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssj0041925
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Na9RAFB_qFkQP4id-U9A5ydZMMpPMnGSyTSgePLXQgyBJmlQ8rNAP0N7EXvxAb9pTQUFpEUVQpG7Fv8bs0v_C9yaz2VW3-AFewtt5L-_93rzZvJnhZULIxSRnaZGL-WZaJEET8jVrqkL6TRgrXEA-9sS8KZC95k_P8qtzYm6scX2oamllOZ3MVke-V_IvUYU2iCu-JfsXka2VQgPQEF-4QoTh-kcxppFPQ4eGnEYB1ZKGIY0U1SFV0rAk1QpZ0qN6ikaC6oiGHhJhi4baEJpqH4VVQEPf6FGWJWOjB4gWVYYlgaXMXRHMQGnE0YSMjFGXSo56JCgUSAAezVBYgXBoTERGRiBOuz9wq-8IWAGBltWpKmyBUWVcQw0CvajQGiv9wWIRKccYQeAjOAFaBZeQgJtbI0QkXuUoDhAxAgQRUBG6w3slLh9UJprRbbqeURUb8b5R8A27zARMmV7AGhNlHa7Cg0Y8GPSGO4UhQS6iveTiKVaKuuJXniFi09k-2tDxHp3HqQ6GerFuqTEF-FOxH2UqQiFWCPKe4Dg34P6b60PZE9OrL22TTa_VaVz9x4gzlCyrwmw77WLm4IkRGV0FwqR0tDBZW5jE8OKxtmwwkanLS9t3F7I7KUogQGcfGXch5zsNMq7DqTAeLBcY7ojU-czFUyH8wfJbMA8__lCXjGHBhDDVExbEfnKhD_Hy3gDN64DtImkvDM1cZw6TQ3bJOaGr58cRMrZ68yg5qBcW7bE7-TFypfv-Y29zZ_fNend7q3f_bfnuQ_mlU3Zed59_6m11yqfr5eNnvQefy6_3vm0_2X251n34qrv5otx41N1YK3c6x8lsHM20ppv20yrNJWY2jJKgYFnAlcML6TFw3JUig7WLw-a5k2TcSV0PBPNcBm4BS4LEh4VEmiWeLNyE5d4J0mjfbucnyQSHCb5fsCRVKuNFwmSSw6InSTMhYfaQ-afIhHX_hn10Lt34KUCnfy9yhhwY_KHPksby4kp-DpYDy-l5G9Xv1_m_KQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%B0%B4%E7%A8%BB%E9%AB%98%E6%B8%A9%E7%83%AD%E5%AE%B3%E5%BC%BA%E5%BA%A6%E6%97%B6%E7%A9%BA%E5%8F%98%E5%8C%96%E7%89%B9%E5%BE%81%E4%B8%8E%E9%A2%84%E6%8A%A5%E6%A8%A1%E5%9E%8B%E6%9E%84%E5%BB%BA&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E5%BE%90%E6%95%8F&rft.au=%E5%BE%90%E7%BB%8F%E7%BA%AC&rft.au=%E5%BE%90%E8%90%8C&rft.au=%E5%BE%90%E5%BF%86%E8%8F%B2&rft.date=2024-05-01&rft.pub=%E6%B1%9F%E8%8B%8F%E7%9C%81%E6%B0%94%E5%80%99%E4%B8%AD%E5%BF%83%2C%E5%8D%97%E4%BA%AC+210019%25%E5%8D%97%E4%BA%AC%E4%BF%A1%E6%81%AF%E5%B7%A5%E7%A8%8B%E5%A4%A7%E5%AD%A6%E5%A4%A7%E6%B0%94%E7%A7%91%E5%AD%A6%E5%AD%A6%E9%99%A2%2C%E5%8D%97%E4%BA%AC+210044%25%E6%B1%9F%E8%8B%8F%E7%9C%81%E6%B0%94%E5%80%99%E4%B8%AD%E5%BF%83%2C%E5%8D%97%E4%BA%AC+210019&rft.issn=1002-6819&rft.volume=40&rft.issue=10&rft.spage=97&rft.epage=106&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.202403101&rft.externalDocID=nygcxb202410010
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg