面向微博用户的消费意图识别算法
利用迁移学习的方法,融合京东问答平台数据与少量已标注的微博数据构建训练集,提出一种基于注意力机制的双向长短期记忆神经网络(Attentional-Bi-LSTM)模型,用于识别用户的隐性消费意图.针对显性意图识别问题,提出一种结合TF-IDF (term frequency-inverse document frequency)与句法分析中动宾关系(VOB)的消费意图对象提取算法.实验结果表明,通过将迁移京东问答平台的数据与微博数据相融合,可以有效地扩充训练集,在此基础上训练的神经网络分类模型具有较高的准确率和召回率;融合VOB和TF-IDF的显性消费意图对象提取方法的准确率达到78.8%....
Saved in:
| Published in | 北京大学学报(自然科学版) Vol. 56; no. 1; pp. 68 - 74 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | Chinese |
| Published |
东北大学计算机科学与工程学院,沈阳,110819%北京理工大学计算机学院,北京,100081
20.01.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0479-8023 |
| DOI | 10.13209/j.0479-8023.2019.102 |
Cover
| Abstract | 利用迁移学习的方法,融合京东问答平台数据与少量已标注的微博数据构建训练集,提出一种基于注意力机制的双向长短期记忆神经网络(Attentional-Bi-LSTM)模型,用于识别用户的隐性消费意图.针对显性意图识别问题,提出一种结合TF-IDF (term frequency-inverse document frequency)与句法分析中动宾关系(VOB)的消费意图对象提取算法.实验结果表明,通过将迁移京东问答平台的数据与微博数据相融合,可以有效地扩充训练集,在此基础上训练的神经网络分类模型具有较高的准确率和召回率;融合VOB和TF-IDF的显性消费意图对象提取方法的准确率达到78.8%. |
|---|---|
| AbstractList | 利用迁移学习的方法,融合京东问答平台数据与少量已标注的微博数据构建训练集,提出一种基于注意力机制的双向长短期记忆神经网络(Attentional-Bi-LSTM)模型,用于识别用户的隐性消费意图.针对显性意图识别问题,提出一种结合TF-IDF (term frequency-inverse document frequency)与句法分析中动宾关系(VOB)的消费意图对象提取算法.实验结果表明,通过将迁移京东问答平台的数据与微博数据相融合,可以有效地扩充训练集,在此基础上训练的神经网络分类模型具有较高的准确率和召回率;融合VOB和TF-IDF的显性消费意图对象提取方法的准确率达到78.8%. |
| Author | 夏利 贾云龙 王国仁 韩东红 林海原 |
| AuthorAffiliation | 东北大学计算机科学与工程学院,沈阳,110819%北京理工大学计算机学院,北京,100081 |
| AuthorAffiliation_xml | – name: 东北大学计算机科学与工程学院,沈阳,110819%北京理工大学计算机学院,北京,100081 |
| Author_FL | XIA Li HAN Donghong JIA Yunlong LIN Haiyuan WANG Guoren |
| Author_FL_xml | – sequence: 1 fullname: JIA Yunlong – sequence: 2 fullname: HAN Donghong – sequence: 3 fullname: LIN Haiyuan – sequence: 4 fullname: WANG Guoren – sequence: 5 fullname: XIA Li |
| Author_xml | – sequence: 1 fullname: 贾云龙 – sequence: 2 fullname: 韩东红 – sequence: 3 fullname: 林海原 – sequence: 4 fullname: 王国仁 – sequence: 5 fullname: 夏利 |
| BookMark | eNo9zb1KA0EUBeApIhhjHsHaatY7dyezM6UE_yBgo3XY2Z0rLjIBFzEPEGQbUUERIjZWghALRbHJ2-xufAsXFDnFgVOcb4W1_Mg7xtYEBCJEMBtZADIyXAOGAYIwgQBssfb_uMy6eX5sQSBqo6RoM_79-FRe35TzWXk5rW-fq-Kznk6qj2Lx_lVNrsqH-eL1oixe6tl99Xa3ypYoPsld96877HB766C_ywf7O3v9zQHPGxC4UimCNCoyROAi0uBUYkNIXCIkISWExqQ9S1ZKoyOnFQGlqDSkrqeVCTts_ff3PPYU-6NhNjo79Y04tFk6HltsFBBNwh9M1laN |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.13209/j.0479-8023.2019.102 |
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| DocumentTitle_FL | Consumption Intent Recognition Algorithms for Weibo Users |
| EndPage | 74 |
| ExternalDocumentID | bjdxxb202001010 |
| GrantInformation_xml | – fundername: 国家重点研发计划项目; 国家自然科学基金; 计算机软件新技术国家重点实验室开放课题 funderid: (2016YFC1401900); (61173029,61672144,61872072); (KFKT2018) |
| GroupedDBID | -01 23M 2B. 4A8 5GY 8FE 8FH 92E 92I 93N AAABJ AAQEF ABJNI ABLSY ABPYQ ABUWG ABVRV ACECN ACGFS ACPRK ACTRF ADCJG ADGMY ADMLS ADMQQ ADRFT ADZSZ AENOO AEXCR AFKRA AFSCH AFTSM AFZMG AHIBC AIVZI AJZVN ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI BPHCQ BVBZV CCEZO CCPQU CCVFK CW9 HCIFZ LK8 M7P P2P PDI PHGZM PHGZT PMFND PQQKQ PSX TCJ TGP U1G U5K UY8 |
| ID | FETCH-LOGICAL-s1020-66d2049679ff0e7f80e6cb30cec14f2fcf299d5bfb44987e86f0fd2680de58693 |
| ISSN | 0479-8023 |
| IngestDate | Thu May 29 04:00:37 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 1 |
| Keywords | 注意力机制 意图对象提取 迁移学习 消费意图识别 |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-s1020-66d2049679ff0e7f80e6cb30cec14f2fcf299d5bfb44987e86f0fd2680de58693 |
| PageCount | 7 |
| ParticipantIDs | wanfang_journals_bjdxxb202001010 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-20 |
| PublicationDateYYYYMMDD | 2020-01-20 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationTitle | 北京大学学报(自然科学版) |
| PublicationTitle_FL | Acta Scientiarum Naturalium Universitatis Pekinensis |
| PublicationYear | 2020 |
| Publisher | 东北大学计算机科学与工程学院,沈阳,110819%北京理工大学计算机学院,北京,100081 |
| Publisher_xml | – name: 东北大学计算机科学与工程学院,沈阳,110819%北京理工大学计算机学院,北京,100081 |
| SSID | ssib012289641 ssib051370299 ssj0030172 ssib001522812 ssib002258124 ssib000862120 ssib030194702 ssib008143590 ssib002040163 ssib006703675 ssib038076459 |
| Score | 2.3164487 |
| Snippet | 利用迁移学习的方法,融合京东问答平台数据与少量已标注的微博数据构建训练集,提出一种基于注意力机制的双向长短期记忆神经网络(Attentional-Bi-LSTM)模型,用于识别用户的... |
| SourceID | wanfang |
| SourceType | Aggregation Database |
| StartPage | 68 |
| Title | 面向微博用户的消费意图识别算法 |
| URI | https://d.wanfangdata.com.cn/periodical/bjdxxb202001010 |
| Volume | 56 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: East & South Asia Database issn: 0479-8023 databaseCode: BVBZV dateStart: 20170101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.proquest.com/eastsouthasia omitProxy: false ssIdentifier: ssj0030172 providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central issn: 0479-8023 databaseCode: BENPR dateStart: 20170101 customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.proquest.com/central omitProxy: true ssIdentifier: ssj0030172 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RAdKjbixexfuA3e3BAD6nJJJmPY5JmKYJFpIXeSrLJKD2sYFsoPRfpRVRQhIoXT4JQD4ripf9mt_Vf-N5kNsnaBa2XZfbNmzfvI5v33uzMG0Ju57h5MCu0k4WCOQFE3E5WBH3HK0rug__VQuOC_oMlvrgS3F8NV2c6qrVraWszn-_vTD1X8j9WBRjYFU_JnsKyNVEAQBvsC59gYfj8JxvTVFG1QCNG05AqlyoPG3FKoxQbcoGqiKaCqoBGkqacSkljYSARlQFCYgNMAR7QWBkciC57hmCMpKAr6lHJDUFoxzgc6Cthhvu0ur1yHOAatMT0AsGIRglCImBAmAZwy1sNmA5wQpr2aJxYTiTQN2wDJ8AeTiesaHYUdCmDXI2q1zLGcqR2chyk8KtqoYDKejRSBkVSlSA5ZJQ1KJyqWsDQaAyEAkivQREIkPFYTwuGXEyri2HGyygMd-M5zK0f_NaktZpOakeifiNvQtEwJI6m6cIQlMbewCiqUqCxK9YsDois8ClhiRGJGd0BUKL9WIJnNDxFWTjNeAIfrMr8lv6pGJ7Kw4lZgAcTNrbcUiCUg2UD2z60Kg4_8a6oHGJ1Z5INrar7mE44bZ-Zorfr8zVp3HKpsKpIE6XUe0fz9WJ7O0cTYnlE9wyZZeDQ3Q6ZjdOlh48mcnWPtXMDxiZq7YH78ng7lg0x2G2cEZama8XWEjOL5i9lD6gp3uQS4ChVIJpaeniRQ7tQU-j50Iu5fxUm-rj4gmHiWGZ7vBCVcW-aKsypwoHOBo9bAfDyeXLOZq7dqHoNzZGZnScXyJyNDTa6d2wB-7sXifPrw8fhq9fDw4Phi_2jN59Gez-O9ndH3_eOv_0c7b4cvj88_vJ8uPf56ODd6OvbS2Slly4ni469lsXZ8MxiEy9Ad4oLpbVbCi3dkvdz3-2XfS_QTPc1iFmEuc6DQElRSq5dXTAu3aIMJVf-ZdIZPB2UV0hXl4APSWVfZF4gdZi7BQ-zXAsvKyGKzq6SrpV5zb52N9b-sP-1v6NcJ2ebX_wN0tl8tlXehFRiM79lH5rfhxHEjA |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%9D%A2%E5%90%91%E5%BE%AE%E5%8D%9A%E7%94%A8%E6%88%B7%E7%9A%84%E6%B6%88%E8%B4%B9%E6%84%8F%E5%9B%BE%E8%AF%86%E5%88%AB%E7%AE%97%E6%B3%95&rft.jtitle=%E5%8C%97%E4%BA%AC%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E7%89%88%EF%BC%89&rft.au=%E8%B4%BE%E4%BA%91%E9%BE%99&rft.au=%E9%9F%A9%E4%B8%9C%E7%BA%A2&rft.au=%E6%9E%97%E6%B5%B7%E5%8E%9F&rft.au=%E7%8E%8B%E5%9B%BD%E4%BB%81&rft.date=2020-01-20&rft.pub=%E4%B8%9C%E5%8C%97%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B2%88%E9%98%B3%2C110819%25%E5%8C%97%E4%BA%AC%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%AD%A6%E9%99%A2%2C%E5%8C%97%E4%BA%AC%2C100081&rft.issn=0479-8023&rft.volume=56&rft.issue=1&rft.spage=68&rft.epage=74&rft_id=info:doi/10.13209%2Fj.0479-8023.2019.102&rft.externalDocID=bjdxxb202001010 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fbjdxxb%2Fbjdxxb.jpg |