面向微博用户的消费意图识别算法

利用迁移学习的方法,融合京东问答平台数据与少量已标注的微博数据构建训练集,提出一种基于注意力机制的双向长短期记忆神经网络(Attentional-Bi-LSTM)模型,用于识别用户的隐性消费意图.针对显性意图识别问题,提出一种结合TF-IDF (term frequency-inverse document frequency)与句法分析中动宾关系(VOB)的消费意图对象提取算法.实验结果表明,通过将迁移京东问答平台的数据与微博数据相融合,可以有效地扩充训练集,在此基础上训练的神经网络分类模型具有较高的准确率和召回率;融合VOB和TF-IDF的显性消费意图对象提取方法的准确率达到78.8%....

Full description

Saved in:
Bibliographic Details
Published in北京大学学报(自然科学版) Vol. 56; no. 1; pp. 68 - 74
Main Authors 贾云龙, 韩东红, 林海原, 王国仁, 夏利
Format Journal Article
LanguageChinese
Published 东北大学计算机科学与工程学院,沈阳,110819%北京理工大学计算机学院,北京,100081 20.01.2020
Subjects
Online AccessGet full text
ISSN0479-8023
DOI10.13209/j.0479-8023.2019.102

Cover

Abstract 利用迁移学习的方法,融合京东问答平台数据与少量已标注的微博数据构建训练集,提出一种基于注意力机制的双向长短期记忆神经网络(Attentional-Bi-LSTM)模型,用于识别用户的隐性消费意图.针对显性意图识别问题,提出一种结合TF-IDF (term frequency-inverse document frequency)与句法分析中动宾关系(VOB)的消费意图对象提取算法.实验结果表明,通过将迁移京东问答平台的数据与微博数据相融合,可以有效地扩充训练集,在此基础上训练的神经网络分类模型具有较高的准确率和召回率;融合VOB和TF-IDF的显性消费意图对象提取方法的准确率达到78.8%.
AbstractList 利用迁移学习的方法,融合京东问答平台数据与少量已标注的微博数据构建训练集,提出一种基于注意力机制的双向长短期记忆神经网络(Attentional-Bi-LSTM)模型,用于识别用户的隐性消费意图.针对显性意图识别问题,提出一种结合TF-IDF (term frequency-inverse document frequency)与句法分析中动宾关系(VOB)的消费意图对象提取算法.实验结果表明,通过将迁移京东问答平台的数据与微博数据相融合,可以有效地扩充训练集,在此基础上训练的神经网络分类模型具有较高的准确率和召回率;融合VOB和TF-IDF的显性消费意图对象提取方法的准确率达到78.8%.
Author 夏利
贾云龙
王国仁
韩东红
林海原
AuthorAffiliation 东北大学计算机科学与工程学院,沈阳,110819%北京理工大学计算机学院,北京,100081
AuthorAffiliation_xml – name: 东北大学计算机科学与工程学院,沈阳,110819%北京理工大学计算机学院,北京,100081
Author_FL XIA Li
HAN Donghong
JIA Yunlong
LIN Haiyuan
WANG Guoren
Author_FL_xml – sequence: 1
  fullname: JIA Yunlong
– sequence: 2
  fullname: HAN Donghong
– sequence: 3
  fullname: LIN Haiyuan
– sequence: 4
  fullname: WANG Guoren
– sequence: 5
  fullname: XIA Li
Author_xml – sequence: 1
  fullname: 贾云龙
– sequence: 2
  fullname: 韩东红
– sequence: 3
  fullname: 林海原
– sequence: 4
  fullname: 王国仁
– sequence: 5
  fullname: 夏利
BookMark eNo9zb1KA0EUBeApIhhjHsHaatY7dyezM6UE_yBgo3XY2Z0rLjIBFzEPEGQbUUERIjZWghALRbHJ2-xufAsXFDnFgVOcb4W1_Mg7xtYEBCJEMBtZADIyXAOGAYIwgQBssfb_uMy6eX5sQSBqo6RoM_79-FRe35TzWXk5rW-fq-Kznk6qj2Lx_lVNrsqH-eL1oixe6tl99Xa3ypYoPsld96877HB766C_ywf7O3v9zQHPGxC4UimCNCoyROAi0uBUYkNIXCIkISWExqQ9S1ZKoyOnFQGlqDSkrqeVCTts_ff3PPYU-6NhNjo79Y04tFk6HltsFBBNwh9M1laN
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.13209/j.0479-8023.2019.102
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitle_FL Consumption Intent Recognition Algorithms for Weibo Users
EndPage 74
ExternalDocumentID bjdxxb202001010
GrantInformation_xml – fundername: 国家重点研发计划项目; 国家自然科学基金; 计算机软件新技术国家重点实验室开放课题
  funderid: (2016YFC1401900); (61173029,61672144,61872072); (KFKT2018)
GroupedDBID -01
23M
2B.
4A8
5GY
8FE
8FH
92E
92I
93N
AAABJ
AAQEF
ABJNI
ABLSY
ABPYQ
ABUWG
ABVRV
ACECN
ACGFS
ACPRK
ACTRF
ADCJG
ADGMY
ADMLS
ADMQQ
ADRFT
ADZSZ
AENOO
AEXCR
AFKRA
AFSCH
AFTSM
AFZMG
AHIBC
AIVZI
AJZVN
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
BPHCQ
BVBZV
CCEZO
CCPQU
CCVFK
CW9
HCIFZ
LK8
M7P
P2P
PDI
PHGZM
PHGZT
PMFND
PQQKQ
PSX
TCJ
TGP
U1G
U5K
UY8
ID FETCH-LOGICAL-s1020-66d2049679ff0e7f80e6cb30cec14f2fcf299d5bfb44987e86f0fd2680de58693
ISSN 0479-8023
IngestDate Thu May 29 04:00:37 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords 注意力机制
意图对象提取
迁移学习
消费意图识别
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1020-66d2049679ff0e7f80e6cb30cec14f2fcf299d5bfb44987e86f0fd2680de58693
PageCount 7
ParticipantIDs wanfang_journals_bjdxxb202001010
PublicationCentury 2000
PublicationDate 2020-01-20
PublicationDateYYYYMMDD 2020-01-20
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-20
  day: 20
PublicationDecade 2020
PublicationTitle 北京大学学报(自然科学版)
PublicationTitle_FL Acta Scientiarum Naturalium Universitatis Pekinensis
PublicationYear 2020
Publisher 东北大学计算机科学与工程学院,沈阳,110819%北京理工大学计算机学院,北京,100081
Publisher_xml – name: 东北大学计算机科学与工程学院,沈阳,110819%北京理工大学计算机学院,北京,100081
SSID ssib012289641
ssib051370299
ssj0030172
ssib001522812
ssib002258124
ssib000862120
ssib030194702
ssib008143590
ssib002040163
ssib006703675
ssib038076459
Score 2.3164487
Snippet 利用迁移学习的方法,融合京东问答平台数据与少量已标注的微博数据构建训练集,提出一种基于注意力机制的双向长短期记忆神经网络(Attentional-Bi-LSTM)模型,用于识别用户的...
SourceID wanfang
SourceType Aggregation Database
StartPage 68
Title 面向微博用户的消费意图识别算法
URI https://d.wanfangdata.com.cn/periodical/bjdxxb202001010
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: East & South Asia Database
  issn: 0479-8023
  databaseCode: BVBZV
  dateStart: 20170101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.proquest.com/eastsouthasia
  omitProxy: false
  ssIdentifier: ssj0030172
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  issn: 0479-8023
  databaseCode: BENPR
  dateStart: 20170101
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.proquest.com/central
  omitProxy: true
  ssIdentifier: ssj0030172
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RAdKjbixexfuA3e3BAD6nJJJmPY5JmKYJFpIXeSrLJKD2sYFsoPRfpRVRQhIoXT4JQD4ripf9mt_Vf-N5kNsnaBa2XZfbNmzfvI5v33uzMG0Ju57h5MCu0k4WCOQFE3E5WBH3HK0rug__VQuOC_oMlvrgS3F8NV2c6qrVraWszn-_vTD1X8j9WBRjYFU_JnsKyNVEAQBvsC59gYfj8JxvTVFG1QCNG05AqlyoPG3FKoxQbcoGqiKaCqoBGkqacSkljYSARlQFCYgNMAR7QWBkciC57hmCMpKAr6lHJDUFoxzgc6Cthhvu0ur1yHOAatMT0AsGIRglCImBAmAZwy1sNmA5wQpr2aJxYTiTQN2wDJ8AeTiesaHYUdCmDXI2q1zLGcqR2chyk8KtqoYDKejRSBkVSlSA5ZJQ1KJyqWsDQaAyEAkivQREIkPFYTwuGXEyri2HGyygMd-M5zK0f_NaktZpOakeifiNvQtEwJI6m6cIQlMbewCiqUqCxK9YsDois8ClhiRGJGd0BUKL9WIJnNDxFWTjNeAIfrMr8lv6pGJ7Kw4lZgAcTNrbcUiCUg2UD2z60Kg4_8a6oHGJ1Z5INrar7mE44bZ-Zorfr8zVp3HKpsKpIE6XUe0fz9WJ7O0cTYnlE9wyZZeDQ3Q6ZjdOlh48mcnWPtXMDxiZq7YH78ng7lg0x2G2cEZama8XWEjOL5i9lD6gp3uQS4ChVIJpaeniRQ7tQU-j50Iu5fxUm-rj4gmHiWGZ7vBCVcW-aKsypwoHOBo9bAfDyeXLOZq7dqHoNzZGZnScXyJyNDTa6d2wB-7sXifPrw8fhq9fDw4Phi_2jN59Gez-O9ndH3_eOv_0c7b4cvj88_vJ8uPf56ODd6OvbS2Slly4ni469lsXZ8MxiEy9Ad4oLpbVbCi3dkvdz3-2XfS_QTPc1iFmEuc6DQElRSq5dXTAu3aIMJVf-ZdIZPB2UV0hXl4APSWVfZF4gdZi7BQ-zXAsvKyGKzq6SrpV5zb52N9b-sP-1v6NcJ2ebX_wN0tl8tlXehFRiM79lH5rfhxHEjA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%9D%A2%E5%90%91%E5%BE%AE%E5%8D%9A%E7%94%A8%E6%88%B7%E7%9A%84%E6%B6%88%E8%B4%B9%E6%84%8F%E5%9B%BE%E8%AF%86%E5%88%AB%E7%AE%97%E6%B3%95&rft.jtitle=%E5%8C%97%E4%BA%AC%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E7%89%88%EF%BC%89&rft.au=%E8%B4%BE%E4%BA%91%E9%BE%99&rft.au=%E9%9F%A9%E4%B8%9C%E7%BA%A2&rft.au=%E6%9E%97%E6%B5%B7%E5%8E%9F&rft.au=%E7%8E%8B%E5%9B%BD%E4%BB%81&rft.date=2020-01-20&rft.pub=%E4%B8%9C%E5%8C%97%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E6%B2%88%E9%98%B3%2C110819%25%E5%8C%97%E4%BA%AC%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%AD%A6%E9%99%A2%2C%E5%8C%97%E4%BA%AC%2C100081&rft.issn=0479-8023&rft.volume=56&rft.issue=1&rft.spage=68&rft.epage=74&rft_id=info:doi/10.13209%2Fj.0479-8023.2019.102&rft.externalDocID=bjdxxb202001010
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fbjdxxb%2Fbjdxxb.jpg