专注智能油藏储量预测的深度时空注意力模型
TE155; 现有油藏储量预测方法的精度远不能满足实际应用的需求.受循环神经网络和注意力机制的启发,提出一种专注智能油藏储量预测的深度时空注意力模型.该模型通过时间注意力模型来捕获输入数据之间的关键信息,空间注意力模型捕获隐藏状态之间的关系紧密程度,能够缓解数据波动对预测结果的不利影响,从而大幅减小预测误差.结果表明,相比传统方法和已有的深度学习方法,该模型预测精度有显著提高,为今后油藏储量预测提供一种更优的选择....
Saved in:
Published in | 中国石油大学学报(自然科学版) Vol. 44; no. 4; pp. 77 - 82 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | Chinese |
Published |
中国石油大学(华东)计算机科学与技术学院,山东青岛266580
20.08.2020
中国石油大学胜利学院,山东东营257061%中国石油大学(华东)计算机科学与技术学院,山东青岛,266580%中国石化胜利油田物探院,山东东营,257022 |
Subjects | |
Online Access | Get full text |
ISSN | 1673-5005 |
DOI | 10.3969/j.issn.1673-5005.2020.04.009 |
Cover
Abstract | TE155; 现有油藏储量预测方法的精度远不能满足实际应用的需求.受循环神经网络和注意力机制的启发,提出一种专注智能油藏储量预测的深度时空注意力模型.该模型通过时间注意力模型来捕获输入数据之间的关键信息,空间注意力模型捕获隐藏状态之间的关系紧密程度,能够缓解数据波动对预测结果的不利影响,从而大幅减小预测误差.结果表明,相比传统方法和已有的深度学习方法,该模型预测精度有显著提高,为今后油藏储量预测提供一种更优的选择. |
---|---|
AbstractList | TE155; 现有油藏储量预测方法的精度远不能满足实际应用的需求.受循环神经网络和注意力机制的启发,提出一种专注智能油藏储量预测的深度时空注意力模型.该模型通过时间注意力模型来捕获输入数据之间的关键信息,空间注意力模型捕获隐藏状态之间的关系紧密程度,能够缓解数据波动对预测结果的不利影响,从而大幅减小预测误差.结果表明,相比传统方法和已有的深度学习方法,该模型预测精度有显著提高,为今后油藏储量预测提供一种更优的选择. |
Author | 李亚传 姚纯纯 刘玉杰 张益政 赫俊民 李宗民 |
AuthorAffiliation | 中国石油大学(华东)计算机科学与技术学院,山东青岛266580;中国石油大学胜利学院,山东东营257061%中国石油大学(华东)计算机科学与技术学院,山东青岛,266580%中国石化胜利油田物探院,山东东营,257022 |
AuthorAffiliation_xml | – name: 中国石油大学(华东)计算机科学与技术学院,山东青岛266580;中国石油大学胜利学院,山东东营257061%中国石油大学(华东)计算机科学与技术学院,山东青岛,266580%中国石化胜利油田物探院,山东东营,257022 |
Author_FL | HE Junmin LI Zongmin LI Yachuan LIU Yujie YAO Chunchun ZHANG Yizheng |
Author_FL_xml | – sequence: 1 fullname: LI Zongmin – sequence: 2 fullname: LI Yachuan – sequence: 3 fullname: HE Junmin – sequence: 4 fullname: ZHANG Yizheng – sequence: 5 fullname: YAO Chunchun – sequence: 6 fullname: LIU Yujie |
Author_xml | – sequence: 1 fullname: 李宗民 – sequence: 2 fullname: 李亚传 – sequence: 3 fullname: 赫俊民 – sequence: 4 fullname: 张益政 – sequence: 5 fullname: 姚纯纯 – sequence: 6 fullname: 刘玉杰 |
BookMark | eNo9T0tLw0AY3EMFa-2_EDxl_faRTQJepPiCghc9l2x2Iy2SgotYrxoQ7CEHD0UFQQ8Sjyq-Av4bs23_hSmKpxmGYR4LqJb0E43QEgHMAhGs9HDXmAQT4THHBXAxBQoYOAYIaqj-r8-jpjFdCUA49TiIOlr9_ri0L7m9KiZnX_b5czLKytN8ep5N71P7Ohxfp_b9qSwe7Oht_FjMnGlWXtzY_K68HS6iuTg8MLr5hw20t7G-29py2jub2621tmNItcMRrqaay1iQiPuR8qSrqFIiCpWOqOdVlMWe1MwPQAihqas41YRVbubLkDLWQMu_ucdhEofJfqfXPzpMqsaOOVGDgZy9BQ4E2A9BTGQt |
ClassificationCodes | TE155 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3969/j.issn.1673-5005.2020.04.009 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitle_FL | A deep spatio-temporal attention model focusing on intelligent reserve prediction |
EndPage | 82 |
ExternalDocumentID | sydxxb202004010 |
GrantInformation_xml | – fundername: 国家自然科学基金项目; 山东省自然科学基金项目; 国家重点研发计划 funderid: (61379106); (ZR2013FM036,ZR2015FM011); (2019YFF0301800) |
GroupedDBID | -02 2B. 4A8 92I 93N ABJIA ADMLS AKVCP ALMA_UNASSIGNED_HOLDINGS CCEZO CDRFL EBO EBU EOJEC OBODZ PSX TCJ TH9 |
ID | FETCH-LOGICAL-s1020-65e2e4bf61c48cd7b5d2dd6cadec277dd63f7be3890666e25d42e131c438ba233 |
ISSN | 1673-5005 |
IngestDate | Thu May 29 03:53:51 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Keywords | 注意力机制 循环神经网络 深度时空注意力模型 油藏储量预测 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1020-65e2e4bf61c48cd7b5d2dd6cadec277dd63f7be3890666e25d42e131c438ba233 |
PageCount | 6 |
ParticipantIDs | wanfang_journals_sydxxb202004010 |
PublicationCentury | 2000 |
PublicationDate | 2020-08-20 |
PublicationDateYYYYMMDD | 2020-08-20 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | 中国石油大学学报(自然科学版) |
PublicationTitle_FL | Journal of China University of Petroleum(Edition of Natural Science) |
PublicationYear | 2020 |
Publisher | 中国石油大学(华东)计算机科学与技术学院,山东青岛266580 中国石油大学胜利学院,山东东营257061%中国石油大学(华东)计算机科学与技术学院,山东青岛,266580%中国石化胜利油田物探院,山东东营,257022 |
Publisher_xml | – name: 中国石油大学胜利学院,山东东营257061%中国石油大学(华东)计算机科学与技术学院,山东青岛,266580%中国石化胜利油田物探院,山东东营,257022 – name: 中国石油大学(华东)计算机科学与技术学院,山东青岛266580 |
SSID | ssib001427406 ssib006703227 ssib001104775 ssib002040037 ssib036435281 ssib051369029 ssib008679755 ssib005319374 ssib023168192 ssj0001125114 |
Score | 2.3016067 |
Snippet | TE155; 现有油藏储量预测方法的精度远不能满足实际应用的需求.受循环神经网络和注意力机制的启发,提出一种专注智能油藏储量预测的深度时空注意力模型.该模型通过时间注意... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 77 |
Title | 专注智能油藏储量预测的深度时空注意力模型 |
URI | https://d.wanfangdata.com.cn/periodical/sydxxb202004010 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Business Source Ultimate issn: 1673-5005 databaseCode: AKVCP dateStart: 20151201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=bsu omitProxy: true ssIdentifier: ssj0001125114 providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text issn: 1673-5005 databaseCode: ADMLS dateStart: 20151201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text omitProxy: false ssIdentifier: ssj0001125114 providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RANJQtiB7ET_ymh77j1mQyM5kBL5PdLEWsF1vorSSbXT2tYFuoPWpBsIcePBQVBD1IPar4VfDfuGn7L3xvdpoEXfzoJQzva957M8mbN5kPz5tWudY8EmlTqoA3uZTdpkopcdUp41mW6X5Of3TnbsvZBX5zUSxONHht1dLqSjbTXR-7r-QorYowbFfaJfsfLVsKRQCWsX3xiS2Mz39qY0g4xAp0CImEOASjqKA1xAYSBSqEuG1RDGJNEB2B6kAiQDFLrEGNIBoMA8UtMWJjSCLQ5hASQRwQF4o10laBEEk0ZlRXrXZkcVUY0DFBEG4su05Qcn007PQ3bYuNrbZYb4ekVWoLMBxMZAttq0BZkFSLEZAgSwuUslajVobkoCZOSZQZ1LgQpS3xiKucCrGWtUElljYhK0kLH3QwhoST5egjKrTA-BWJIh-a2GI6pOHvUsSIx5obOxJN5PVZGGbXADK_fG-O6C-mbHuUamM_aAGzHQKtpLaJKnMRFZtxXrOMJME6XfmO2HRqNJo6H_Yk1rImBrbfHNZI2DZoZlEM9cdRmxhdsOXCoozCpvB9UY-bo3M73feB14Kgu5fHDafYuEAdaqltoCbxM6X4GXKtPXrY19UApVw2uvwwX1vLiAZDD-2rnGSRlKzhTZr23K07VRpA54_UjyHkLOL11QQUuWrDcopDYS0NkhgGGavwdChlVO3fZnTZW1CtRghxVC9YtX9bBKHUh3-77VwvZRH2moHS0mPetHPD9T85wW4lHPTTwd3aqHf-lHfSpatTZvTtOe1NrN87452oHWJ61rvx4-uz4uNO8Xx3__H34sO3_e2t4aOdgydbB282ik-bey82ii_vh7tvi-3Pe-92iXJja_j0ZbHzevhq85y30EnmW7NNdydLczmwM02ix3o868ugy1U3jzKRszyXtJeny6IIi2E_ynqYBtHESI-JnLNeECJ1qLKUheF5rzG4P-hd8KYwdcnQTX6aRygx7Ks8zfxUcJSRsixQF70pZ_uS--YuL_3SAy79neSyd7x6X694jZUHq72rmEesZNdct_kJWprM6Q |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E4%B8%93%E6%B3%A8%E6%99%BA%E8%83%BD%E6%B2%B9%E8%97%8F%E5%82%A8%E9%87%8F%E9%A2%84%E6%B5%8B%E7%9A%84%E6%B7%B1%E5%BA%A6%E6%97%B6%E7%A9%BA%E6%B3%A8%E6%84%8F%E5%8A%9B%E6%A8%A1%E5%9E%8B&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%9F%B3%E6%B2%B9%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%87%AA%E7%84%B6%E7%A7%91%E5%AD%A6%E7%89%88%EF%BC%89&rft.au=%E6%9D%8E%E5%AE%97%E6%B0%91&rft.au=%E6%9D%8E%E4%BA%9A%E4%BC%A0&rft.au=%E8%B5%AB%E4%BF%8A%E6%B0%91&rft.au=%E5%BC%A0%E7%9B%8A%E6%94%BF&rft.date=2020-08-20&rft.pub=%E4%B8%AD%E5%9B%BD%E7%9F%B3%E6%B2%B9%E5%A4%A7%E5%AD%A6%28%E5%8D%8E%E4%B8%9C%29%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E5%B1%B1%E4%B8%9C%E9%9D%92%E5%B2%9B266580&rft.issn=1673-5005&rft.volume=44&rft.issue=4&rft.spage=77&rft.epage=82&rft_id=info:doi/10.3969%2Fj.issn.1673-5005.2020.04.009&rft.externalDocID=sydxxb202004010 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fsydxxb%2Fsydxxb.jpg |