基于GPS数据的公交站运行状态分析

U491.1%TP391; 为有效提高公交站点的运行效率,对公交站的运行状态进行识别、预测及影响因素分析,以中国西安市公交车全球定位系统轨迹数据为例,建立平均服务时间和服务车数特征参数反映公交站的运行状态,并通过分析站点内公交车辆速度、里程及加速度之间关系计算站台服务时间.使用Hopkins统计量和轮廓系数分析可聚性和聚类数,结合高斯混合模型(Gaussian mixture model,GMM)对公交站运行状态进行识别分类.构建SMOTEENN-XGBoost(synthetic minority oversampling technique edited nearest neighbour...

Full description

Saved in:
Bibliographic Details
Published in深圳大学学报(理工版) Vol. 40; no. 3; pp. 326 - 334
Main Authors 黄洪滔, 肖梅, 刘倩, 明秀玲, 边浩毅
Format Journal Article
LanguageChinese
Published 长安大学运输工程学院,陕西西安710064%浙江机电职业技术学院,浙江杭州310053 01.05.2023
Subjects
Online AccessGet full text
ISSN1000-2618
DOI10.3724/SP.J.1249.2023.03326

Cover

Abstract U491.1%TP391; 为有效提高公交站点的运行效率,对公交站的运行状态进行识别、预测及影响因素分析,以中国西安市公交车全球定位系统轨迹数据为例,建立平均服务时间和服务车数特征参数反映公交站的运行状态,并通过分析站点内公交车辆速度、里程及加速度之间关系计算站台服务时间.使用Hopkins统计量和轮廓系数分析可聚性和聚类数,结合高斯混合模型(Gaussian mixture model,GMM)对公交站运行状态进行识别分类.构建SMOTEENN-XGBoost(synthetic minority oversampling technique edited nearest neighbours-extreme gradient boosting)站点运行状态预测模型,引入可解释机器学习框架SHAP(Shapley additive explanation)分析站台属性、道路及环境对模型的影响.结果表明,公交站运行状态可分为3类,类型Ⅰ的平均服务时间最长,类型Ⅱ的平均服务时间和服务车数最少,类型Ⅲ的服务车数最多;所建立SMOTEENN-XGBoost模型的准确率为94.68%,精确率为94.69%,召回率为91.04%,F1分数为92.26%,与极限梯度提升(extreme gradient boosting,XGBoost)、逻辑回归(logistic regression,LR)、随机森林(random forest,RF)、梯度提升决策树(gradient boosting decision tree,GBDT)和k近邻(k-nearest neighbors,KNN)5种模型对比,本模型能够精准预测站点运行状态;对站点运行状态具有影响作用的因素按照重要程度由大到小依次为线路数、有无公交专用道、泊位数、站台设置方法、站台几何形状、车道数、站台设置位置、是否工作日、时段及天气类型.研究结果可为公交站点设计优化提供一定参考依据.
AbstractList U491.1%TP391; 为有效提高公交站点的运行效率,对公交站的运行状态进行识别、预测及影响因素分析,以中国西安市公交车全球定位系统轨迹数据为例,建立平均服务时间和服务车数特征参数反映公交站的运行状态,并通过分析站点内公交车辆速度、里程及加速度之间关系计算站台服务时间.使用Hopkins统计量和轮廓系数分析可聚性和聚类数,结合高斯混合模型(Gaussian mixture model,GMM)对公交站运行状态进行识别分类.构建SMOTEENN-XGBoost(synthetic minority oversampling technique edited nearest neighbours-extreme gradient boosting)站点运行状态预测模型,引入可解释机器学习框架SHAP(Shapley additive explanation)分析站台属性、道路及环境对模型的影响.结果表明,公交站运行状态可分为3类,类型Ⅰ的平均服务时间最长,类型Ⅱ的平均服务时间和服务车数最少,类型Ⅲ的服务车数最多;所建立SMOTEENN-XGBoost模型的准确率为94.68%,精确率为94.69%,召回率为91.04%,F1分数为92.26%,与极限梯度提升(extreme gradient boosting,XGBoost)、逻辑回归(logistic regression,LR)、随机森林(random forest,RF)、梯度提升决策树(gradient boosting decision tree,GBDT)和k近邻(k-nearest neighbors,KNN)5种模型对比,本模型能够精准预测站点运行状态;对站点运行状态具有影响作用的因素按照重要程度由大到小依次为线路数、有无公交专用道、泊位数、站台设置方法、站台几何形状、车道数、站台设置位置、是否工作日、时段及天气类型.研究结果可为公交站点设计优化提供一定参考依据.
Author 肖梅
刘倩
边浩毅
明秀玲
黄洪滔
AuthorAffiliation 长安大学运输工程学院,陕西西安710064%浙江机电职业技术学院,浙江杭州310053
AuthorAffiliation_xml – name: 长安大学运输工程学院,陕西西安710064%浙江机电职业技术学院,浙江杭州310053
Author_FL LIU Qian
XIAO Mei
MING Xiuling
HUANG Hongtao
BIAN Haoyi
Author_FL_xml – sequence: 1
  fullname: HUANG Hongtao
– sequence: 2
  fullname: XIAO Mei
– sequence: 3
  fullname: LIU Qian
– sequence: 4
  fullname: MING Xiuling
– sequence: 5
  fullname: BIAN Haoyi
Author_xml – sequence: 1
  fullname: 黄洪滔
– sequence: 2
  fullname: 肖梅
– sequence: 3
  fullname: 刘倩
– sequence: 4
  fullname: 明秀玲
– sequence: 5
  fullname: 边浩毅
BookMark eNotjzFLw0AYQG-oYK39B-5Oid_3Xe6SG6VoVQoWqnO5S-5EkRQMYnFSUJGi0sVBB0VwU8TJIYt_pkn6M6zo9Lb3eAuslg5Sy9gSgs9DClZ6XX_LRwqUT0DcB85J1lgdAcAjidE8a2bZvgEg4EpxrDOveM4n-V272yvvP8vbj-rxorh8n-Sv1dvD9Hs8fbmpRl_l2XlxfVU-jRfZnNOHmW3-s8F219d2WhteZ7u92VrteBnO1J4ALRRSHMTCSusCECiNNKF1IpAmlhEoMkliEh1K1A4sWWU4CiGUCCMyvMGW_7wnOnU63esfDI6P0lmxn50mw6H5vQMOCPwH_N1Umw
ClassificationCodes U491.1%TP391
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3724/SP.J.1249.2023.03326
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitle_FL Analysis of bus-stop operating state based on GPS data
EndPage 334
ExternalDocumentID szdxxb202303010
GrantInformation_xml – fundername: (浙江省尖兵领雁研发攻关计划资助项目); (陕西省社会科学基金资助项目)
  funderid: (浙江省尖兵领雁研发攻关计划资助项目); (陕西省社会科学基金资助项目)
GroupedDBID -03
2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
PSX
TCJ
ID FETCH-LOGICAL-s1020-50a5912c4c5e6ef40516b6b7ef546bc68092bddbda761af0e2e9b3155595782b3
ISSN 1000-2618
IngestDate Thu May 29 03:55:52 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords XGBoost模型
公交站点
运行状态
全球定位系统(GPS)数据
可解释机器学习
城市交通
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1020-50a5912c4c5e6ef40516b6b7ef546bc68092bddbda761af0e2e9b3155595782b3
PageCount 9
ParticipantIDs wanfang_journals_szdxxb202303010
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationTitle 深圳大学学报(理工版)
PublicationTitle_FL Journal of Shenzhen University(Science & Engineering)
PublicationYear 2023
Publisher 长安大学运输工程学院,陕西西安710064%浙江机电职业技术学院,浙江杭州310053
Publisher_xml – name: 长安大学运输工程学院,陕西西安710064%浙江机电职业技术学院,浙江杭州310053
SSID ssib002039931
ssib023167934
ssib058868920
ssj0040343
ssib002423991
ssib057620144
ssib006704940
ssib041262056
ssib051373859
ssib001129675
Score 2.3815374
Snippet U491.1%TP391; 为有效提高公交站点的运行效率,对公交站的运行状态进行识别、预测及影响因素分析,以中国西安市公交车全球定位系统轨迹数据为例,建立平均服务时间和服务车数...
SourceID wanfang
SourceType Aggregation Database
StartPage 326
Title 基于GPS数据的公交站运行状态分析
URI https://d.wanfangdata.com.cn/periodical/szdxxb202303010
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ - Directory of Open Access Journals
  issn: 1000-2618
  databaseCode: DOA
  dateStart: 20180101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssib058868920
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  issn: 1000-2618
  databaseCode: ADMLS
  dateStart: 20190701
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  omitProxy: false
  ssIdentifier: ssib057620144
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQwMEC5cEGUh3hrD4wEh10Sx3bso7P1UlUCVaKVequSbAKnRWJbqeoJJEAIAeqFAxxASNxAiBOHXviZdtvPYMYOu2m1iMclmngm4xmPY8848TgIrhU5U3SSSLtgaAYeq7KtNCvaWYmRW59lvJ_Rgv7tO3J-mS-siJWjM0cafy2tr-WdYnPqvpL_sSqWoV1pl-w_WHbMFAsQRvviFS2M17-yMVgBugepAcvpquytxbtgJWgBaUiAmgNjwSagEcuJXgkw3ZrecEKZFLQGqyDtgQ4JMBGoLqGUgVQ6PiG6nO5xBcqVaAv-BM5fri0Vpgmkjkx3IY0JwCpM4gCURDYAScyNAIvyd4ktCRk65oL4EAoF0A7lacZrFmA1pKlTCOvEGowDUA8-IUFBGWhXk2HgT-zxGKeFVg4IwTTYSipWrsFQakSSCBZS1lwcYY1fEV13JnGoxXtOPUtCT9G80b4ptl18QE-D1aYNYk0mQbFZt4aRPxnG1zIG6uood5LkwIRrBuHMKckS2DlIp67rIti-nLDUMt7AeKuoZ3hjqLAmNr3fSDKV-RxRel20pQ85Pi1zPdNRSgEMn1VzKvSZs-pXPm7MazGTDRcp9uvPh2ffOGGcvv8vdhY6dKZ5hyzSCePxwwfymg83-xsbOZFQVB4eC46zRErWWBVxHj36o810Qywkj_rAVmwsaGydTijh0XgKYpToQU8yIPKIDmCYpI8SEWX2mnj0GH0zWmMY3ysllTvPzTt3PIzrPTt16_nduKT5zWl6u62Agyob3Gt4rUungpN1uNkyfuyYDY5u3j8dzNYT-rB1vc46f-NM0N79sL2z_RoHkNGbb6NXX_fePdl9-mVn-9Pe57f7P7b2P77ce_F99Ojx7vNno_dbZ4Plnl3qzrfrs1Taw4hWiESYCR2xgheilGWFYVokc5knZSW4zAuJAzbL-_28nyUyyqqwZKXOYww2hKYDL_L4XDAzeDAozwetouTIh0c8YzTjYwSY5RjnlFUhqrCq5IWgVeu8Wo-Vw9VDxr74Z5JLwYnJC305mFl7uF5eQf9_Lb_qeshPkLKx1Q
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EGPS%E6%95%B0%E6%8D%AE%E7%9A%84%E5%85%AC%E4%BA%A4%E7%AB%99%E8%BF%90%E8%A1%8C%E7%8A%B6%E6%80%81%E5%88%86%E6%9E%90&rft.jtitle=%E6%B7%B1%E5%9C%B3%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E7%90%86%E5%B7%A5%E7%89%88%EF%BC%89&rft.au=%E9%BB%84%E6%B4%AA%E6%BB%94&rft.au=%E8%82%96%E6%A2%85&rft.au=%E5%88%98%E5%80%A9&rft.au=%E6%98%8E%E7%A7%80%E7%8E%B2&rft.date=2023-05-01&rft.pub=%E9%95%BF%E5%AE%89%E5%A4%A7%E5%AD%A6%E8%BF%90%E8%BE%93%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E9%99%95%E8%A5%BF%E8%A5%BF%E5%AE%89710064%25%E6%B5%99%E6%B1%9F%E6%9C%BA%E7%94%B5%E8%81%8C%E4%B8%9A%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E6%B5%99%E6%B1%9F%E6%9D%AD%E5%B7%9E310053&rft.issn=1000-2618&rft.volume=40&rft.issue=3&rft.spage=326&rft.epage=334&rft_id=info:doi/10.3724%2FSP.J.1249.2023.03326&rft.externalDocID=szdxxb202303010
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fszdxxb%2Fszdxxb.jpg