基于GPS数据的公交站运行状态分析
U491.1%TP391; 为有效提高公交站点的运行效率,对公交站的运行状态进行识别、预测及影响因素分析,以中国西安市公交车全球定位系统轨迹数据为例,建立平均服务时间和服务车数特征参数反映公交站的运行状态,并通过分析站点内公交车辆速度、里程及加速度之间关系计算站台服务时间.使用Hopkins统计量和轮廓系数分析可聚性和聚类数,结合高斯混合模型(Gaussian mixture model,GMM)对公交站运行状态进行识别分类.构建SMOTEENN-XGBoost(synthetic minority oversampling technique edited nearest neighbour...
Saved in:
Published in | 深圳大学学报(理工版) Vol. 40; no. 3; pp. 326 - 334 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | Chinese |
Published |
长安大学运输工程学院,陕西西安710064%浙江机电职业技术学院,浙江杭州310053
01.05.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1000-2618 |
DOI | 10.3724/SP.J.1249.2023.03326 |
Cover
Abstract | U491.1%TP391; 为有效提高公交站点的运行效率,对公交站的运行状态进行识别、预测及影响因素分析,以中国西安市公交车全球定位系统轨迹数据为例,建立平均服务时间和服务车数特征参数反映公交站的运行状态,并通过分析站点内公交车辆速度、里程及加速度之间关系计算站台服务时间.使用Hopkins统计量和轮廓系数分析可聚性和聚类数,结合高斯混合模型(Gaussian mixture model,GMM)对公交站运行状态进行识别分类.构建SMOTEENN-XGBoost(synthetic minority oversampling technique edited nearest neighbours-extreme gradient boosting)站点运行状态预测模型,引入可解释机器学习框架SHAP(Shapley additive explanation)分析站台属性、道路及环境对模型的影响.结果表明,公交站运行状态可分为3类,类型Ⅰ的平均服务时间最长,类型Ⅱ的平均服务时间和服务车数最少,类型Ⅲ的服务车数最多;所建立SMOTEENN-XGBoost模型的准确率为94.68%,精确率为94.69%,召回率为91.04%,F1分数为92.26%,与极限梯度提升(extreme gradient boosting,XGBoost)、逻辑回归(logistic regression,LR)、随机森林(random forest,RF)、梯度提升决策树(gradient boosting decision tree,GBDT)和k近邻(k-nearest neighbors,KNN)5种模型对比,本模型能够精准预测站点运行状态;对站点运行状态具有影响作用的因素按照重要程度由大到小依次为线路数、有无公交专用道、泊位数、站台设置方法、站台几何形状、车道数、站台设置位置、是否工作日、时段及天气类型.研究结果可为公交站点设计优化提供一定参考依据. |
---|---|
AbstractList | U491.1%TP391; 为有效提高公交站点的运行效率,对公交站的运行状态进行识别、预测及影响因素分析,以中国西安市公交车全球定位系统轨迹数据为例,建立平均服务时间和服务车数特征参数反映公交站的运行状态,并通过分析站点内公交车辆速度、里程及加速度之间关系计算站台服务时间.使用Hopkins统计量和轮廓系数分析可聚性和聚类数,结合高斯混合模型(Gaussian mixture model,GMM)对公交站运行状态进行识别分类.构建SMOTEENN-XGBoost(synthetic minority oversampling technique edited nearest neighbours-extreme gradient boosting)站点运行状态预测模型,引入可解释机器学习框架SHAP(Shapley additive explanation)分析站台属性、道路及环境对模型的影响.结果表明,公交站运行状态可分为3类,类型Ⅰ的平均服务时间最长,类型Ⅱ的平均服务时间和服务车数最少,类型Ⅲ的服务车数最多;所建立SMOTEENN-XGBoost模型的准确率为94.68%,精确率为94.69%,召回率为91.04%,F1分数为92.26%,与极限梯度提升(extreme gradient boosting,XGBoost)、逻辑回归(logistic regression,LR)、随机森林(random forest,RF)、梯度提升决策树(gradient boosting decision tree,GBDT)和k近邻(k-nearest neighbors,KNN)5种模型对比,本模型能够精准预测站点运行状态;对站点运行状态具有影响作用的因素按照重要程度由大到小依次为线路数、有无公交专用道、泊位数、站台设置方法、站台几何形状、车道数、站台设置位置、是否工作日、时段及天气类型.研究结果可为公交站点设计优化提供一定参考依据. |
Author | 肖梅 刘倩 边浩毅 明秀玲 黄洪滔 |
AuthorAffiliation | 长安大学运输工程学院,陕西西安710064%浙江机电职业技术学院,浙江杭州310053 |
AuthorAffiliation_xml | – name: 长安大学运输工程学院,陕西西安710064%浙江机电职业技术学院,浙江杭州310053 |
Author_FL | LIU Qian XIAO Mei MING Xiuling HUANG Hongtao BIAN Haoyi |
Author_FL_xml | – sequence: 1 fullname: HUANG Hongtao – sequence: 2 fullname: XIAO Mei – sequence: 3 fullname: LIU Qian – sequence: 4 fullname: MING Xiuling – sequence: 5 fullname: BIAN Haoyi |
Author_xml | – sequence: 1 fullname: 黄洪滔 – sequence: 2 fullname: 肖梅 – sequence: 3 fullname: 刘倩 – sequence: 4 fullname: 明秀玲 – sequence: 5 fullname: 边浩毅 |
BookMark | eNotjzFLw0AYQG-oYK39B-5Oid_3Xe6SG6VoVQoWqnO5S-5EkRQMYnFSUJGi0sVBB0VwU8TJIYt_pkn6M6zo9Lb3eAuslg5Sy9gSgs9DClZ6XX_LRwqUT0DcB85J1lgdAcAjidE8a2bZvgEg4EpxrDOveM4n-V272yvvP8vbj-rxorh8n-Sv1dvD9Hs8fbmpRl_l2XlxfVU-jRfZnNOHmW3-s8F219d2WhteZ7u92VrteBnO1J4ALRRSHMTCSusCECiNNKF1IpAmlhEoMkliEh1K1A4sWWU4CiGUCCMyvMGW_7wnOnU63esfDI6P0lmxn50mw6H5vQMOCPwH_N1Umw |
ClassificationCodes | U491.1%TP391 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3724/SP.J.1249.2023.03326 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitle_FL | Analysis of bus-stop operating state based on GPS data |
EndPage | 334 |
ExternalDocumentID | szdxxb202303010 |
GrantInformation_xml | – fundername: (浙江省尖兵领雁研发攻关计划资助项目); (陕西省社会科学基金资助项目) funderid: (浙江省尖兵领雁研发攻关计划资助项目); (陕西省社会科学基金资助项目) |
GroupedDBID | -03 2B. 4A8 92I 93N ALMA_UNASSIGNED_HOLDINGS CCEZO CEKLB PSX TCJ |
ID | FETCH-LOGICAL-s1020-50a5912c4c5e6ef40516b6b7ef546bc68092bddbda761af0e2e9b3155595782b3 |
ISSN | 1000-2618 |
IngestDate | Thu May 29 03:55:52 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Keywords | XGBoost模型 公交站点 运行状态 全球定位系统(GPS)数据 可解释机器学习 城市交通 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1020-50a5912c4c5e6ef40516b6b7ef546bc68092bddbda761af0e2e9b3155595782b3 |
PageCount | 9 |
ParticipantIDs | wanfang_journals_szdxxb202303010 |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | 深圳大学学报(理工版) |
PublicationTitle_FL | Journal of Shenzhen University(Science & Engineering) |
PublicationYear | 2023 |
Publisher | 长安大学运输工程学院,陕西西安710064%浙江机电职业技术学院,浙江杭州310053 |
Publisher_xml | – name: 长安大学运输工程学院,陕西西安710064%浙江机电职业技术学院,浙江杭州310053 |
SSID | ssib002039931 ssib023167934 ssib058868920 ssj0040343 ssib002423991 ssib057620144 ssib006704940 ssib041262056 ssib051373859 ssib001129675 |
Score | 2.3815374 |
Snippet | U491.1%TP391; 为有效提高公交站点的运行效率,对公交站的运行状态进行识别、预测及影响因素分析,以中国西安市公交车全球定位系统轨迹数据为例,建立平均服务时间和服务车数... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 326 |
Title | 基于GPS数据的公交站运行状态分析 |
URI | https://d.wanfangdata.com.cn/periodical/szdxxb202303010 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ - Directory of Open Access Journals issn: 1000-2618 databaseCode: DOA dateStart: 20180101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssib058868920 providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text issn: 1000-2618 databaseCode: ADMLS dateStart: 20190701 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text omitProxy: false ssIdentifier: ssib057620144 providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQwMEC5cEGUh3hrD4wEh10Sx3bso7P1UlUCVaKVequSbAKnRWJbqeoJJEAIAeqFAxxASNxAiBOHXviZdtvPYMYOu2m1iMclmngm4xmPY8848TgIrhU5U3SSSLtgaAYeq7KtNCvaWYmRW59lvJ_Rgv7tO3J-mS-siJWjM0cafy2tr-WdYnPqvpL_sSqWoV1pl-w_WHbMFAsQRvviFS2M17-yMVgBugepAcvpquytxbtgJWgBaUiAmgNjwSagEcuJXgkw3ZrecEKZFLQGqyDtgQ4JMBGoLqGUgVQ6PiG6nO5xBcqVaAv-BM5fri0Vpgmkjkx3IY0JwCpM4gCURDYAScyNAIvyd4ktCRk65oL4EAoF0A7lacZrFmA1pKlTCOvEGowDUA8-IUFBGWhXk2HgT-zxGKeFVg4IwTTYSipWrsFQakSSCBZS1lwcYY1fEV13JnGoxXtOPUtCT9G80b4ptl18QE-D1aYNYk0mQbFZt4aRPxnG1zIG6uood5LkwIRrBuHMKckS2DlIp67rIti-nLDUMt7AeKuoZ3hjqLAmNr3fSDKV-RxRel20pQ85Pi1zPdNRSgEMn1VzKvSZs-pXPm7MazGTDRcp9uvPh2ffOGGcvv8vdhY6dKZ5hyzSCePxwwfymg83-xsbOZFQVB4eC46zRErWWBVxHj36o810Qywkj_rAVmwsaGydTijh0XgKYpToQU8yIPKIDmCYpI8SEWX2mnj0GH0zWmMY3ysllTvPzTt3PIzrPTt16_nduKT5zWl6u62Agyob3Gt4rUungpN1uNkyfuyYDY5u3j8dzNYT-rB1vc46f-NM0N79sL2z_RoHkNGbb6NXX_fePdl9-mVn-9Pe57f7P7b2P77ce_F99Ojx7vNno_dbZ4Plnl3qzrfrs1Taw4hWiESYCR2xgheilGWFYVokc5knZSW4zAuJAzbL-_28nyUyyqqwZKXOYww2hKYDL_L4XDAzeDAozwetouTIh0c8YzTjYwSY5RjnlFUhqrCq5IWgVeu8Wo-Vw9VDxr74Z5JLwYnJC305mFl7uF5eQf9_Lb_qeshPkLKx1Q |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EGPS%E6%95%B0%E6%8D%AE%E7%9A%84%E5%85%AC%E4%BA%A4%E7%AB%99%E8%BF%90%E8%A1%8C%E7%8A%B6%E6%80%81%E5%88%86%E6%9E%90&rft.jtitle=%E6%B7%B1%E5%9C%B3%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E7%90%86%E5%B7%A5%E7%89%88%EF%BC%89&rft.au=%E9%BB%84%E6%B4%AA%E6%BB%94&rft.au=%E8%82%96%E6%A2%85&rft.au=%E5%88%98%E5%80%A9&rft.au=%E6%98%8E%E7%A7%80%E7%8E%B2&rft.date=2023-05-01&rft.pub=%E9%95%BF%E5%AE%89%E5%A4%A7%E5%AD%A6%E8%BF%90%E8%BE%93%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E9%99%95%E8%A5%BF%E8%A5%BF%E5%AE%89710064%25%E6%B5%99%E6%B1%9F%E6%9C%BA%E7%94%B5%E8%81%8C%E4%B8%9A%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E6%B5%99%E6%B1%9F%E6%9D%AD%E5%B7%9E310053&rft.issn=1000-2618&rft.volume=40&rft.issue=3&rft.spage=326&rft.epage=334&rft_id=info:doi/10.3724%2FSP.J.1249.2023.03326&rft.externalDocID=szdxxb202303010 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fszdxxb%2Fszdxxb.jpg |