基于深度学习的白酒酒花实时分类方法

目的:解决白酒传统摘酒方法"看花摘酒"的主观性和不稳定性,以及现有机器视觉酒花分类方法难以满足实时分类的问题.方法:轻量型YOLOv5以YOLOv5 s作为初始模型,使用K-mean聚类的锚框取代默认锚框,以提高模型检测精度和稳定性,使用ShuffleNetV2网络替换YOLOv5 s主干网络进行特征提取,以达到轻量化模型的目的,并增加CBAM注意力机制使模型更加关注酒花特征.结果:与YOLOv5 s初始模型相比,轻量型YOLOv5模型占用内存减少92.5%,参数量减少93.7%,计算量降低63.4%,检测精度提升2.8%,FPS高达526.结论:轻量型YOLOv5降低了对...

Full description

Saved in:
Bibliographic Details
Published in食品与机械 Vol. 38; no. 11; pp. 111 - 116
Main Authors 刘智萍, 崔克彬
Format Journal Article
LanguageChinese
Published 华北电力大学计算机系,河北 保定 071003 2022
Subjects
Online AccessGet full text
ISSN1003-5788
DOI10.13652/j.spjx.1003.5788.2022.80168

Cover

Abstract 目的:解决白酒传统摘酒方法"看花摘酒"的主观性和不稳定性,以及现有机器视觉酒花分类方法难以满足实时分类的问题.方法:轻量型YOLOv5以YOLOv5 s作为初始模型,使用K-mean聚类的锚框取代默认锚框,以提高模型检测精度和稳定性,使用ShuffleNetV2网络替换YOLOv5 s主干网络进行特征提取,以达到轻量化模型的目的,并增加CBAM注意力机制使模型更加关注酒花特征.结果:与YOLOv5 s初始模型相比,轻量型YOLOv5模型占用内存减少92.5%,参数量减少93.7%,计算量降低63.4%,检测精度提升2.8%,FPS高达526.结论:轻量型YOLOv5降低了对硬件配置的要求,可以很好地实现酒花实时检测分类.
AbstractList 目的:解决白酒传统摘酒方法"看花摘酒"的主观性和不稳定性,以及现有机器视觉酒花分类方法难以满足实时分类的问题.方法:轻量型YOLOv5以YOLOv5 s作为初始模型,使用K-mean聚类的锚框取代默认锚框,以提高模型检测精度和稳定性,使用ShuffleNetV2网络替换YOLOv5 s主干网络进行特征提取,以达到轻量化模型的目的,并增加CBAM注意力机制使模型更加关注酒花特征.结果:与YOLOv5 s初始模型相比,轻量型YOLOv5模型占用内存减少92.5%,参数量减少93.7%,计算量降低63.4%,检测精度提升2.8%,FPS高达526.结论:轻量型YOLOv5降低了对硬件配置的要求,可以很好地实现酒花实时检测分类.
Author 崔克彬
刘智萍
AuthorAffiliation 华北电力大学计算机系,河北 保定 071003
AuthorAffiliation_xml – name: 华北电力大学计算机系,河北 保定 071003
Author_FL LIU Zhi-ping
CUI Ke-bin
Author_FL_xml – sequence: 1
  fullname: LIU Zhi-ping
– sequence: 2
  fullname: CUI Ke-bin
Author_xml – sequence: 1
  fullname: 刘智萍
– sequence: 2
  fullname: 崔克彬
BookMark eNotj89Kw0AYxPdQwVr7FuIt67f7ZTfZoxT_QcGLnssmm4hB0uIi6l1FPHgQrOhBPfWmEASlEd-mSfQtTFAYGBiG-TELpJUO04iQJQaUoRR8JaF2lJxQBoBUeL5POXBOfWDSb5F2EztNPE-61u4HgNJFV0lsEyye8ll-XX5kRT4pXiaz6XP1cFbdf_2c39T6vsqK18fy7r24vKiyz3I8Ld9uF8lcrA9s1P33DtldX9vpbTr97Y2t3mrfsQyYckJpMODauKHyhOEyVEJi7AZRHGmAwEMhGLK64YceM8agMCoSoMCA0l4cYIcs_-0e6zTW6d4gGR4dpjVxYEenSdJcZA0JfwF0nF23
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.13652/j.spjx.1003.5788.2022.80168
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Real-time classification method for liquor hops based on deep learning
EndPage 116
ExternalDocumentID spyjj202211019
GrantInformation_xml – fundername: 河北省自然基金研究项目
  funderid: (F2018502080)
GroupedDBID -02
2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CDRFL
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-s1019-c6d3b2ad4c975d26c9563f4befea00b7355131b2a8c71ddd35d9e5090d09a7fb3
ISSN 1003-5788
IngestDate Thu May 29 03:54:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords 实时分类
ShuffleNetV2
白酒酒花
YOLOv5
CBAM注意力机制
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1019-c6d3b2ad4c975d26c9563f4befea00b7355131b2a8c71ddd35d9e5090d09a7fb3
PageCount 6
ParticipantIDs wanfang_journals_spyjj202211019
PublicationCentury 2000
PublicationDate 2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationTitle 食品与机械
PublicationTitle_FL Food & Machinery
PublicationYear 2022
Publisher 华北电力大学计算机系,河北 保定 071003
Publisher_xml – name: 华北电力大学计算机系,河北 保定 071003
SSID ssib036434963
ssib001105548
ssib001214864
ssj0002912145
ssib002263614
ssib008679503
ssib051376485
ssib000271415
Score 2.307037
Snippet 目的:解决白酒传统摘酒方法"看花摘酒"的主观性和不稳定性,以及现有机器视觉酒花分类方法难以满足实时分类的问题.方法:轻量型YOLOv5以YOLOv5 s作为初始模型,使用K-mean聚类...
SourceID wanfang
SourceType Aggregation Database
StartPage 111
Title 基于深度学习的白酒酒花实时分类方法
URI https://d.wanfangdata.com.cn/periodical/spyjj202211019
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1003-5788
  databaseCode: DOA
  dateStart: 20220101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0002912145
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxQxdKgVxIsoKn7bQ3OQsutMkskkx8zuLEXQUwu9lZlJRulhW9wWtGcV8eBBUNGDeupNYRGUVvw33V39F76Xne1GKX7BEF4yb17eB5P38h0E85KbvJKGN6RUOXRQmIV20MqGpHnBQxuWibsM5uYtsbjMb6zEKzNHrnmrlrY2i2a5fei-kv-xKpSBXXGX7D9Y9oAoFAAM9oUULAzpX9mYZDFRHZJqknFMZUYyQdKEpBG-ghItENBtBwCOIjokWUIUIHMHKJK2SaaIBFLUAySRuqajM6IcZQWUHUEJbwV-Dghp6l4JJI61MzK-z3IS8iJNzZBP5JZB6Oo4kTW3quX4F0RTkh7MndSVKOlQlEOBbEhk20dJOVHc4cKTuhIQteUPZdBpl9chtl29ALRQHNQAMBO7Ek2Uo6E50YmnN4ka0BEioyoSj-0E5QUN0JaTnWJ2QnzBydkhqj1Rol5wxxwxzxPgoj1ozqTvKpj0f4nIa_gnLsPWOXGoe2Iips4_9TbW7uECFdbEKpqojCbECuMbhn45ALy3cX9tDTEgUsMDbo9SHHryRg_qCeTI7xlHePGp19ONKPR7_Ql2KpjwJtDx3MV4OiHPIFDlanoyWxyBI-L1MUcY5FCFFGO3lqBW1LFgfiLj9d9I6HbHdau8e9sL5JZOBifqHticHv9Op4KZ7TunAzZ4u7e_93T4uT_Y2xm839nffTd6_WD06uv3h8_g-fakP_jwZvjy0-Dxo1H_y_DF7vDj8zPBcidbai026vtEGj3UXKMUhhU0N7xUSWyoKFUsWMULW9k8DIuE4WVHEWDIMomMMSw2ykJAHZpQ5UlVsLPBbHe9a88Fc4VlIq-K3MrEcCuoNLYwNApLCyG8qdj54Got5GrdXvRWf7bjhT9iXAyOIzwe77sUzG7e3bKXIQLeLK442_8ANIGAEA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E7%9A%84%E7%99%BD%E9%85%92%E9%85%92%E8%8A%B1%E5%AE%9E%E6%97%B6%E5%88%86%E7%B1%BB%E6%96%B9%E6%B3%95&rft.jtitle=%E9%A3%9F%E5%93%81%E4%B8%8E%E6%9C%BA%E6%A2%B0&rft.au=%E5%88%98%E6%99%BA%E8%90%8D&rft.au=%E5%B4%94%E5%85%8B%E5%BD%AC&rft.date=2022&rft.pub=%E5%8D%8E%E5%8C%97%E7%94%B5%E5%8A%9B%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%2C%E6%B2%B3%E5%8C%97+%E4%BF%9D%E5%AE%9A+071003&rft.issn=1003-5788&rft.volume=38&rft.issue=11&rft.spage=111&rft.epage=116&rft_id=info:doi/10.13652%2Fj.spjx.1003.5788.2022.80168&rft.externalDocID=spyjj202211019
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fspyjj%2Fspyjj.jpg