基于深度学习的白酒酒花实时分类方法
目的:解决白酒传统摘酒方法"看花摘酒"的主观性和不稳定性,以及现有机器视觉酒花分类方法难以满足实时分类的问题.方法:轻量型YOLOv5以YOLOv5 s作为初始模型,使用K-mean聚类的锚框取代默认锚框,以提高模型检测精度和稳定性,使用ShuffleNetV2网络替换YOLOv5 s主干网络进行特征提取,以达到轻量化模型的目的,并增加CBAM注意力机制使模型更加关注酒花特征.结果:与YOLOv5 s初始模型相比,轻量型YOLOv5模型占用内存减少92.5%,参数量减少93.7%,计算量降低63.4%,检测精度提升2.8%,FPS高达526.结论:轻量型YOLOv5降低了对...
        Saved in:
      
    
          | Published in | 食品与机械 Vol. 38; no. 11; pp. 111 - 116 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | Chinese | 
| Published | 
            华北电力大学计算机系,河北 保定 071003
    
        2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1003-5788 | 
| DOI | 10.13652/j.spjx.1003.5788.2022.80168 | 
Cover
| Abstract | 目的:解决白酒传统摘酒方法"看花摘酒"的主观性和不稳定性,以及现有机器视觉酒花分类方法难以满足实时分类的问题.方法:轻量型YOLOv5以YOLOv5 s作为初始模型,使用K-mean聚类的锚框取代默认锚框,以提高模型检测精度和稳定性,使用ShuffleNetV2网络替换YOLOv5 s主干网络进行特征提取,以达到轻量化模型的目的,并增加CBAM注意力机制使模型更加关注酒花特征.结果:与YOLOv5 s初始模型相比,轻量型YOLOv5模型占用内存减少92.5%,参数量减少93.7%,计算量降低63.4%,检测精度提升2.8%,FPS高达526.结论:轻量型YOLOv5降低了对硬件配置的要求,可以很好地实现酒花实时检测分类. | 
    
|---|---|
| AbstractList | 目的:解决白酒传统摘酒方法"看花摘酒"的主观性和不稳定性,以及现有机器视觉酒花分类方法难以满足实时分类的问题.方法:轻量型YOLOv5以YOLOv5 s作为初始模型,使用K-mean聚类的锚框取代默认锚框,以提高模型检测精度和稳定性,使用ShuffleNetV2网络替换YOLOv5 s主干网络进行特征提取,以达到轻量化模型的目的,并增加CBAM注意力机制使模型更加关注酒花特征.结果:与YOLOv5 s初始模型相比,轻量型YOLOv5模型占用内存减少92.5%,参数量减少93.7%,计算量降低63.4%,检测精度提升2.8%,FPS高达526.结论:轻量型YOLOv5降低了对硬件配置的要求,可以很好地实现酒花实时检测分类. | 
    
| Author | 崔克彬 刘智萍  | 
    
| AuthorAffiliation | 华北电力大学计算机系,河北 保定 071003 | 
    
| AuthorAffiliation_xml | – name: 华北电力大学计算机系,河北 保定 071003 | 
    
| Author_FL | LIU Zhi-ping CUI Ke-bin  | 
    
| Author_FL_xml | – sequence: 1 fullname: LIU Zhi-ping – sequence: 2 fullname: CUI Ke-bin  | 
    
| Author_xml | – sequence: 1 fullname: 刘智萍 – sequence: 2 fullname: 崔克彬  | 
    
| BookMark | eNotj89Kw0AYxPdQwVr7FuIt67f7ZTfZoxT_QcGLnssmm4hB0uIi6l1FPHgQrOhBPfWmEASlEd-mSfQtTFAYGBiG-TELpJUO04iQJQaUoRR8JaF2lJxQBoBUeL5POXBOfWDSb5F2EztNPE-61u4HgNJFV0lsEyye8ll-XX5kRT4pXiaz6XP1cFbdf_2c39T6vsqK18fy7r24vKiyz3I8Ld9uF8lcrA9s1P33DtldX9vpbTr97Y2t3mrfsQyYckJpMODauKHyhOEyVEJi7AZRHGmAwEMhGLK64YceM8agMCoSoMCA0l4cYIcs_-0e6zTW6d4gGR4dpjVxYEenSdJcZA0JfwF0nF23 | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| DBID | 2B. 4A8 92I 93N PSX TCJ  | 
    
| DOI | 10.13652/j.spjx.1003.5788.2022.80168 | 
    
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ)  | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| DocumentTitle_FL | Real-time classification method for liquor hops based on deep learning | 
    
| EndPage | 116 | 
    
| ExternalDocumentID | spyjj202211019 | 
    
| GrantInformation_xml | – fundername: 河北省自然基金研究项目 funderid: (F2018502080)  | 
    
| GroupedDBID | -02 2B. 4A8 92I 93N ALMA_UNASSIGNED_HOLDINGS CCEZO CDRFL GROUPED_DOAJ PSX TCJ  | 
    
| ID | FETCH-LOGICAL-s1019-c6d3b2ad4c975d26c9563f4befea00b7355131b2a8c71ddd35d9e5090d09a7fb3 | 
    
| ISSN | 1003-5788 | 
    
| IngestDate | Thu May 29 03:54:44 EDT 2025 | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 11 | 
    
| Keywords | 实时分类 ShuffleNetV2 白酒酒花 YOLOv5 CBAM注意力机制  | 
    
| Language | Chinese | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-s1019-c6d3b2ad4c975d26c9563f4befea00b7355131b2a8c71ddd35d9e5090d09a7fb3 | 
    
| PageCount | 6 | 
    
| ParticipantIDs | wanfang_journals_spyjj202211019 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022 | 
    
| PublicationDateYYYYMMDD | 2022-01-01 | 
    
| PublicationDate_xml | – year: 2022 text: 2022  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | 食品与机械 | 
    
| PublicationTitle_FL | Food & Machinery | 
    
| PublicationYear | 2022 | 
    
| Publisher | 华北电力大学计算机系,河北 保定 071003 | 
    
| Publisher_xml | – name: 华北电力大学计算机系,河北 保定 071003 | 
    
| SSID | ssib036434963 ssib001105548 ssib001214864 ssj0002912145 ssib002263614 ssib008679503 ssib051376485 ssib000271415  | 
    
| Score | 2.307037 | 
    
| Snippet | 目的:解决白酒传统摘酒方法"看花摘酒"的主观性和不稳定性,以及现有机器视觉酒花分类方法难以满足实时分类的问题.方法:轻量型YOLOv5以YOLOv5 s作为初始模型,使用K-mean聚类... | 
    
| SourceID | wanfang | 
    
| SourceType | Aggregation Database | 
    
| StartPage | 111 | 
    
| Title | 基于深度学习的白酒酒花实时分类方法 | 
    
| URI | https://d.wanfangdata.com.cn/periodical/spyjj202211019 | 
    
| Volume | 38 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1003-5788 databaseCode: DOA dateStart: 20220101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0002912145 providerName: Directory of Open Access Journals  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxQxdKgVxIsoKn7bQ3OQsutMkskkx8zuLEXQUwu9lZlJRulhW9wWtGcV8eBBUNGDeupNYRGUVvw33V39F76Xne1GKX7BEF4yb17eB5P38h0E85KbvJKGN6RUOXRQmIV20MqGpHnBQxuWibsM5uYtsbjMb6zEKzNHrnmrlrY2i2a5fei-kv-xKpSBXXGX7D9Y9oAoFAAM9oUULAzpX9mYZDFRHZJqknFMZUYyQdKEpBG-ghItENBtBwCOIjokWUIUIHMHKJK2SaaIBFLUAySRuqajM6IcZQWUHUEJbwV-Dghp6l4JJI61MzK-z3IS8iJNzZBP5JZB6Oo4kTW3quX4F0RTkh7MndSVKOlQlEOBbEhk20dJOVHc4cKTuhIQteUPZdBpl9chtl29ALRQHNQAMBO7Ek2Uo6E50YmnN4ka0BEioyoSj-0E5QUN0JaTnWJ2QnzBydkhqj1Rol5wxxwxzxPgoj1ozqTvKpj0f4nIa_gnLsPWOXGoe2Iips4_9TbW7uECFdbEKpqojCbECuMbhn45ALy3cX9tDTEgUsMDbo9SHHryRg_qCeTI7xlHePGp19ONKPR7_Ql2KpjwJtDx3MV4OiHPIFDlanoyWxyBI-L1MUcY5FCFFGO3lqBW1LFgfiLj9d9I6HbHdau8e9sL5JZOBifqHticHv9Op4KZ7TunAzZ4u7e_93T4uT_Y2xm839nffTd6_WD06uv3h8_g-fakP_jwZvjy0-Dxo1H_y_DF7vDj8zPBcidbai026vtEGj3UXKMUhhU0N7xUSWyoKFUsWMULW9k8DIuE4WVHEWDIMomMMSw2ykJAHZpQ5UlVsLPBbHe9a88Fc4VlIq-K3MrEcCuoNLYwNApLCyG8qdj54Got5GrdXvRWf7bjhT9iXAyOIzwe77sUzG7e3bKXIQLeLK442_8ANIGAEA | 
    
| linkProvider | Directory of Open Access Journals | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E7%9A%84%E7%99%BD%E9%85%92%E9%85%92%E8%8A%B1%E5%AE%9E%E6%97%B6%E5%88%86%E7%B1%BB%E6%96%B9%E6%B3%95&rft.jtitle=%E9%A3%9F%E5%93%81%E4%B8%8E%E6%9C%BA%E6%A2%B0&rft.au=%E5%88%98%E6%99%BA%E8%90%8D&rft.au=%E5%B4%94%E5%85%8B%E5%BD%AC&rft.date=2022&rft.pub=%E5%8D%8E%E5%8C%97%E7%94%B5%E5%8A%9B%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%B3%BB%2C%E6%B2%B3%E5%8C%97+%E4%BF%9D%E5%AE%9A+071003&rft.issn=1003-5788&rft.volume=38&rft.issue=11&rft.spage=111&rft.epage=116&rft_id=info:doi/10.13652%2Fj.spjx.1003.5788.2022.80168&rft.externalDocID=spyjj202211019 | 
    
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fspyjj%2Fspyjj.jpg |