基于SCN数据模型的SISO非线性自适应控制
针对一类难以建立精确模型的单输入单输出(Single-input single-output,SISO)非线性离散动态系统,提出了一种数据驱动模型的自适应控制方法.所提方法首先设计具有直链与增强结构的随机配置网络(Stochastic configuration network,SCN),建立了一种可同时表征非线性系统低阶线性部分与高阶非线性项(未建模动态)的数据驱动模型,并采用增量学习方法与监督机制,对模型结构与模型参数进行同步更新优化,保证了数据驱动模型的无限逼近能力,解决了传统自适应控制采用交替辨识算法存在的建模精度低、模型收敛性无法保证的问题.进而利用直链部分与增强部分,分别设计了线性...
Saved in:
| Published in | 自动化学报 Vol. 50; no. 10; pp. 2002 - 2012 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | Chinese |
| Published |
中国矿业大学信息与控制工程学院 徐州 221116%中国矿业大学信息与控制工程学院 徐州 221116
01.10.2024
北京科技大学自动化学院 北京 100083 |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0254-4156 |
| DOI | 10.16383/j.aas.c210174 |
Cover
| Abstract | 针对一类难以建立精确模型的单输入单输出(Single-input single-output,SISO)非线性离散动态系统,提出了一种数据驱动模型的自适应控制方法.所提方法首先设计具有直链与增强结构的随机配置网络(Stochastic configuration network,SCN),建立了一种可同时表征非线性系统低阶线性部分与高阶非线性项(未建模动态)的数据驱动模型,并采用增量学习方法与监督机制,对模型结构与模型参数进行同步更新优化,保证了数据驱动模型的无限逼近能力,解决了传统自适应控制采用交替辨识算法存在的建模精度低、模型收敛性无法保证的问题.进而利用直链部分与增强部分,分别设计了线性控制器及虚拟未建模动态补偿器,建立了基于SCN数据驱动模型的自适应控制新方法,分析了其稳定性与收敛性,通过数值仿真实验和采用交替辨识算法的传统自适应控制方法进行对比,实验结果表明了所提方法的有效性. |
|---|---|
| AbstractList | 针对一类难以建立精确模型的单输入单输出(Single-input single-output,SISO)非线性离散动态系统,提出了一种数据驱动模型的自适应控制方法.所提方法首先设计具有直链与增强结构的随机配置网络(Stochastic configuration network,SCN),建立了一种可同时表征非线性系统低阶线性部分与高阶非线性项(未建模动态)的数据驱动模型,并采用增量学习方法与监督机制,对模型结构与模型参数进行同步更新优化,保证了数据驱动模型的无限逼近能力,解决了传统自适应控制采用交替辨识算法存在的建模精度低、模型收敛性无法保证的问题.进而利用直链部分与增强部分,分别设计了线性控制器及虚拟未建模动态补偿器,建立了基于SCN数据驱动模型的自适应控制新方法,分析了其稳定性与收敛性,通过数值仿真实验和采用交替辨识算法的传统自适应控制方法进行对比,实验结果表明了所提方法的有效性. |
| Abstract_FL | For a class of single-input single-output(SISO)nonlinear discrete dynamical systems which are difficult to establish an accurate model,a novel adaptive control method is proposed based on data-driven model.In the pro-posed approach,stochastic configuration network(SCN)is first employed to build the data-driven nonlinear system model,which adopts direct link and enhancement nodes to approximate the low-order linear and the high-order nonlinear parts(unmodeled dynamics)of system,respectively.Besides,this paper employed an incremental learn-ing algorithm and supervision mechanism to optimize the model structure and model parameters synchronously,which guarantee the universal approximation property of the data-driven model,solving the problems of low model-ing accuracy and unguaranteed model convergence existing in traditional adaptive control with alternate identifica-tion algorithm.Then,the direct link and enhancement nodes are used to design the linear controller and virtual un-modeled dynamics compensator respectively.A new adaptive control approach based on SCN data-driven model is established,and the stability and convergence of the proposed control method are proved.Finally,simulation com-parisons between our proposed method and the classic adaptive control method with alternate identification al-gorithm are made,showing the effectiveness of the proposed method. |
| Author | 张政煊 杨春雨 代伟 马小平 |
| AuthorAffiliation | 中国矿业大学信息与控制工程学院 徐州 221116%中国矿业大学信息与控制工程学院 徐州 221116;北京科技大学自动化学院 北京 100083 |
| AuthorAffiliation_xml | – name: 中国矿业大学信息与控制工程学院 徐州 221116%中国矿业大学信息与控制工程学院 徐州 221116;北京科技大学自动化学院 北京 100083 |
| Author_FL | DAI Wei MA Xiao-Ping ZHANG Zheng-Xuan YANG Chun-Yu |
| Author_FL_xml | – sequence: 1 fullname: DAI Wei – sequence: 2 fullname: ZHANG Zheng-Xuan – sequence: 3 fullname: YANG Chun-Yu – sequence: 4 fullname: MA Xiao-Ping |
| Author_xml | – sequence: 1 fullname: 代伟 – sequence: 2 fullname: 张政煊 – sequence: 3 fullname: 杨春雨 – sequence: 4 fullname: 马小平 |
| BookMark | eNotjT1Lw0AYgG-oYK1d_Qluie97H8ndKMGPQrFDdC53yZ1aJAWDKE5FBAVpJ10EK04VB3FyyOKfMan9FwZ0eoYHnmeFNLJhZglZQ_AxYJJtDHytcz-hCBjyBmkCFdzjKIJl0s7zYwOACFQhNgkvn4vvYhJHe9XDRzV-r15fyund_PE67sS9xdN0XnxVo9nPzdtidFUW99VkVt5-rpIlp09y2_5nixxsb-1Hu163t9OJNrteXp-Vp7RJTcpBMMsDmaANwSlrE6eVBkioZlJIYWkIkhqjsbbIuOIojRXSOdYi63_dc505nR32B8Oz06w-9i_TowtDgXIEAMV-AWN-V6E |
| ContentType | Journal Article |
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.16383/j.aas.c210174 |
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| DocumentTitle_FL | Adaptive Control of SISO Nonlinear System Using Data-driven SCN Model |
| EndPage | 2012 |
| ExternalDocumentID | zdhxb202410009 |
| GroupedDBID | --K -0Y .~1 0R~ 1B1 1~. 1~5 2B. 4.4 457 4A8 4G. 5GY 5VS 5XA 5XJ 7-5 71M 8P~ 92H 92I 93N AAIKJ AALRI AAQFI AAXUO ABJNI ABWVN ACGFS ACRPL ADEZE ADNMO ADTZH AECPX AEKER AFTJW AGHFR AGYEJ AITUG ALMA_UNASSIGNED_HOLDINGS BLXMC CCEZO CS3 CUBFJ CW9 EBS EJD EO8 EO9 EP2 EP3 FDB FEDTE FNPLU GBLVA HVGLF HZ~ IHE J1W JJJVA M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PSX Q38 ROL RPZ SDF SDG SES TCJ TGT U1G U5S |
| ID | FETCH-LOGICAL-s1019-9abdbd4053e468c1e70f9eecfa9a00c2a38585e27082bba10f91349418be58ff3 |
| ISSN | 0254-4156 |
| IngestDate | Thu May 29 04:10:31 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | 未建模动态 监督机制 自适应控制 随机配置网络 stochastic configuration network(SCN) data-driven model supervision mechanism 数据驱动模型 Adaptive control unmodeled dynam-ic |
| Language | Chinese |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-s1019-9abdbd4053e468c1e70f9eecfa9a00c2a38585e27082bba10f91349418be58ff3 |
| PageCount | 11 |
| ParticipantIDs | wanfang_journals_zdhxb202410009 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-01 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | 自动化学报 |
| PublicationTitle_FL | Acta Automatica Sinica |
| PublicationYear | 2024 |
| Publisher | 中国矿业大学信息与控制工程学院 徐州 221116%中国矿业大学信息与控制工程学院 徐州 221116 北京科技大学自动化学院 北京 100083 |
| Publisher_xml | – name: 中国矿业大学信息与控制工程学院 徐州 221116%中国矿业大学信息与控制工程学院 徐州 221116 – name: 北京科技大学自动化学院 北京 100083 |
| SSID | ssib001102911 ssib006576350 ssib051375349 ssib007293330 ssj0059721 ssib007290157 ssib023646446 ssib005904210 |
| Score | 2.490084 |
| Snippet | 针对一类难以建立精确模型的单输入单输出(Single-input single-output,SISO)非线性离散动态系统,提出了一种数据驱动模型的自适应控制方法.所提方法首先设计具有直链与增强... |
| SourceID | wanfang |
| SourceType | Aggregation Database |
| StartPage | 2002 |
| Title | 基于SCN数据模型的SISO非线性自适应控制 |
| URI | https://d.wanfangdata.com.cn/periodical/zdhxb202410009 |
| Volume | 50 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0254-4156 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0059721 providerName: Elsevier |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV07bxQxELbCpYEChZd4kwJX0cE-7LVdeu98BAShuASli9Z7u6Q6JJJIKFWEkEBCpIIGiSCqIApERXENf4a7kH_BjG9z64hIPCqk02rWnh3P57n1jL3eWUKuy6C0orS4KcwGTcYEpryNbZOVSSbDvCeLDJcG7i0k80vszjJfnmrMeLuWNtbtjXzzyPdK_sWqUAZ2xbdk_8KyE6FQADTYF45gYTj-kY2p4VR1aKqpYXiUpttaoCahitM0QEK2qTZIaEl16PgNlSk1girgZ93b3fvUKKraWAGlICXtuCsDqgU1kkpBtUYeKJERigAexRyPcTycSknTxI9zvQuhVmPzSLSoSpDQoFbiJEAVPzC6Q5FSHTsCeDt1DccC7TBB26iioBJF1ywJosCGgAC03OECcbJmUVTDr-XEAZqOIxRNY3_xI2KTbXTjv6tTR6LS2H8pTduu_zpODVelHE7Nqu6o4Dk9sdcBZ0j1AbM0v_adU0Q4pQViQBNN5AAM0Dqac0yGqqDiVmYugpk1rovw_15Hz-NEnDVxRu-7x3Fe4INhIPCdXRBEXuAEoWR0pFOGIT52XjnL4G6L0AmwOvyYbArd7K0-sWhkfOSkjpHpCBx10CDTt9K7D3Qd40NIrDynxBX4HS-GTTjmWKzPBe4U8B7tw3kc13Nm_IBC4q2J8DCGGTyuSYzDOY7prdxCbdU3VeZXBHXzECT32l-_zPoPvQh1cYacrKaWs3o8TpwiU5urp8kJL-HoGcKG7wffB9swSozefBm9-jz6-GG483Lv7TMcB_bf7ewNvo22dn88_7S_9XQ4eD3a3h2--HqWLHXMYmu-WX03pbkGiqimymzP9mAmFhcskXlYiKBURZGXmcqCII8ytxmgiASE_9ZmIdRiklIWSltwWZbxOdLoP-oX58msyHMhsixhKo-ZFbHMmezxsCcDG0FpcYFcqzCvVOPi2sphO178Lcclcry-tS-TxvrjjeIKRPrr9mpl-59MeLEn |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8ESCN%E6%95%B0%E6%8D%AE%E6%A8%A1%E5%9E%8B%E7%9A%84SISO%E9%9D%9E%E7%BA%BF%E6%80%A7%E8%87%AA%E9%80%82%E5%BA%94%E6%8E%A7%E5%88%B6&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E4%BB%A3%E4%BC%9F&rft.au=%E5%BC%A0%E6%94%BF%E7%85%8A&rft.au=%E6%9D%A8%E6%98%A5%E9%9B%A8&rft.au=%E9%A9%AC%E5%B0%8F%E5%B9%B3&rft.date=2024-10-01&rft.pub=%E4%B8%AD%E5%9B%BD%E7%9F%BF%E4%B8%9A%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E4%B8%8E%E6%8E%A7%E5%88%B6%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2+%E5%BE%90%E5%B7%9E+221116%25%E4%B8%AD%E5%9B%BD%E7%9F%BF%E4%B8%9A%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E4%B8%8E%E6%8E%A7%E5%88%B6%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2+%E5%BE%90%E5%B7%9E+221116&rft.issn=0254-4156&rft.volume=50&rft.issue=10&rft.spage=2002&rft.epage=2012&rft_id=info:doi/10.16383%2Fj.aas.c210174&rft.externalDocID=zdhxb202410009 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg |