基于深度强化学习的四向协同三维装箱方法

物流作为现代经济的重要组成部分,在国民经济和社会发展中发挥着重要作用.物流中的三维装箱问题(Three-dimensional bin packing problem,3D-BPP)是提高物流运作效率必须解决的关键难题之一.深度强化学习(Deep rein-forcement learning,DRL)具有强大的学习与决策能力,基于DRL的三维装箱方法(Three-dimensional bin packing method based on DRL,DRL-3DBP)已成为智能物流领域的研究热点之一.现有DRL-3DBP面对大尺寸容器3D-BPP时难以达成动作空间、计算复杂性与探索能力之间的...

Full description

Saved in:
Bibliographic Details
Published in自动化学报 Vol. 50; no. 12; pp. 2420 - 2431
Main Authors 尹昊, 陈帆, 和红杰
Format Journal Article
LanguageChinese
Published 西南交通大学信息科学与技术学院 成都 611756%西南交通大学计算机与人工智能学院 成都 611756 01.12.2024
Subjects
Online AccessGet full text
ISSN0254-4156
DOI10.16383/j.aas.c240124

Cover

Abstract 物流作为现代经济的重要组成部分,在国民经济和社会发展中发挥着重要作用.物流中的三维装箱问题(Three-dimensional bin packing problem,3D-BPP)是提高物流运作效率必须解决的关键难题之一.深度强化学习(Deep rein-forcement learning,DRL)具有强大的学习与决策能力,基于DRL的三维装箱方法(Three-dimensional bin packing method based on DRL,DRL-3DBP)已成为智能物流领域的研究热点之一.现有DRL-3DBP面对大尺寸容器3D-BPP时难以达成动作空间、计算复杂性与探索能力之间的平衡.为此,提出一种四向协同装箱(Four directional cooperative packing,FDCP)方法:两阶段策略网络接收旋转后的容器状态,生成4个方向的装箱策略;根据由4个策略采样而得的动作更新对应的4个状态,选取其中价值最大的对应动作为装箱动作.FDCP在压缩动作空间、减小计算复杂性的同时,鼓励智能体对4个方向合理装箱位置的探索.实验结果表明,FDCP在100 × 100大尺寸容器以及20、30、50箱子数量的装箱问题上实现了1.2%~2.9%的空间利用率提升.
AbstractList 物流作为现代经济的重要组成部分,在国民经济和社会发展中发挥着重要作用.物流中的三维装箱问题(Three-dimensional bin packing problem,3D-BPP)是提高物流运作效率必须解决的关键难题之一.深度强化学习(Deep rein-forcement learning,DRL)具有强大的学习与决策能力,基于DRL的三维装箱方法(Three-dimensional bin packing method based on DRL,DRL-3DBP)已成为智能物流领域的研究热点之一.现有DRL-3DBP面对大尺寸容器3D-BPP时难以达成动作空间、计算复杂性与探索能力之间的平衡.为此,提出一种四向协同装箱(Four directional cooperative packing,FDCP)方法:两阶段策略网络接收旋转后的容器状态,生成4个方向的装箱策略;根据由4个策略采样而得的动作更新对应的4个状态,选取其中价值最大的对应动作为装箱动作.FDCP在压缩动作空间、减小计算复杂性的同时,鼓励智能体对4个方向合理装箱位置的探索.实验结果表明,FDCP在100 × 100大尺寸容器以及20、30、50箱子数量的装箱问题上实现了1.2%~2.9%的空间利用率提升.
Abstract_FL As an important part of the modern economy,logistics plays an important role in the national economy and social development.The three-dimensional bin packing problem(3D-BPP)in logistics is one of the key prob-lems that must be solved to improve the efficiency of logistics operations.Deep reinforcement learning(DRL)has a powerful learning and decision-making ability,and the three-dimensional bin packing method based on DRL(DRL-3DBP)has become one of the research hotspots in the field of intelligent logistics.The existing DRL-3DBPs have difficulty in striking a balance between the action space,computational complexity,and exploration capability when solving 3D-BPP with large-size bins.To this end,this paper proposes a four directional cooperative packing(FD-CP)method.The two-stage policy network receives the rotated bin states and generates four directional packing policies.Based on the actions sampled from the four policies,the four states are updated accordingly,and the ac-tion corresponding to the highest value is selected as the packing action.FDCP encourages agent to explore reason-able packing positions in all four directions while compressing the action space and reducing computational com-plexity.Experimental results show that FDCP achieves 1.2%~2.9%improvement in space utilization on the pack-ing problem with 100 × 100 large-sized bin and the numbers of 20,30,and 50 items.
Author 陈帆
尹昊
和红杰
AuthorAffiliation 西南交通大学信息科学与技术学院 成都 611756%西南交通大学计算机与人工智能学院 成都 611756
AuthorAffiliation_xml – name: 西南交通大学信息科学与技术学院 成都 611756%西南交通大学计算机与人工智能学院 成都 611756
Author_FL CHEN Fan
HE Hong-Jie
YIN Hao
Author_FL_xml – sequence: 1
  fullname: YIN Hao
– sequence: 2
  fullname: CHEN Fan
– sequence: 3
  fullname: HE Hong-Jie
Author_xml – sequence: 1
  fullname: 尹昊
– sequence: 2
  fullname: 陈帆
– sequence: 3
  fullname: 和红杰
BookMark eNotzT9LAzEYgPEMFay1qx_B7c73TXJ3ySjFf1Bw0bkkuUQtcgUPUZx1EKrWwQ52UBC6KRQF7enHufT8GAo6PdvvWSC1rJdZQpYQQoyZYCvdUKk8NJQDUl4jdaARDzhG8Txp5vmBBkAEKhHrRPqHoiyuZ-8TX4z9V-H7Q_88LqeP1f25H4384NZf3fhBv_y4rD7fvp8uqpfJbDidvd4tkjmnDnPb_G-D7K6v7bQ2g_b2xlZrtR3kCCiC1DmL1jCdagNxKsGgVQwSIayOBaMskcYaYDJysYqd5CaxqbYIkEhhtGQNsvznnqjMqWyv0-0dH2W_x85Zun-qKVCOFECwHxWlX1M
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16383/j.aas.c240124
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL A Four Directional Cooperative Three-dimensional Packing Method Based on Deep Reinforcement Learning
EndPage 2431
ExternalDocumentID zdhxb202412008
GroupedDBID --K
-0Y
.~1
0R~
1B1
1~.
1~5
2B.
4.4
457
4A8
4G.
5GY
5VS
5XA
5XJ
7-5
71M
8P~
92H
92I
93N
AAIKJ
AALRI
AAQFI
AAXUO
ABJNI
ABWVN
ACGFS
ACRPL
ADEZE
ADNMO
ADTZH
AECPX
AEKER
AFTJW
AGHFR
AGYEJ
AITUG
ALMA_UNASSIGNED_HOLDINGS
BLXMC
CCEZO
CS3
CUBFJ
CW9
EBS
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FNPLU
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PSX
Q38
ROL
RPZ
SDF
SDG
SES
TCJ
TGT
U1G
U5S
ID FETCH-LOGICAL-s1018-dffe1ec3bdbc06d90c1ea30788eb6832379cec0395f6a6f94c7edbe100798cb93
ISSN 0254-4156
IngestDate Thu May 29 04:10:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords 四向协同装箱
组合优化问题
深度强化学习
Three-dimensional bin packing problem(3D-BPP)
combinatorial optimization problem
deep reinforce-ment learning(DRL)
三维装箱问题
four directional cooperative packing(FDCP)
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1018-dffe1ec3bdbc06d90c1ea30788eb6832379cec0395f6a6f94c7edbe100798cb93
PageCount 12
ParticipantIDs wanfang_journals_zdhxb202412008
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle 自动化学报
PublicationTitle_FL Acta Automatica Sinica
PublicationYear 2024
Publisher 西南交通大学信息科学与技术学院 成都 611756%西南交通大学计算机与人工智能学院 成都 611756
Publisher_xml – name: 西南交通大学信息科学与技术学院 成都 611756%西南交通大学计算机与人工智能学院 成都 611756
SSID ssib001102911
ssib006576350
ssib051375349
ssib007293330
ssj0059721
ssib007290157
ssib023646446
ssib005904210
Score 2.4957244
Snippet 物流作为现代经济的重要组成部分,在国民经济和社会发展中发挥着重要作用.物流中的三维装箱问题(Three-dimensional bin packing problem,3D-BPP)是提高物流运作效率必须解...
SourceID wanfang
SourceType Aggregation Database
StartPage 2420
Title 基于深度强化学习的四向协同三维装箱方法
URI https://d.wanfangdata.com.cn/periodical/zdhxb202412008
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0254-4156
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0059721
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQwMKq2F3pAPMWbHvCpCuThOPbR2c1SIeDUot6qOPHS0yLRrYR6hgNSgXKgB3oACak3kCqQoAuf07R8BjOTtJuWStBKqyi2Z8YzHscz9tpjx7kFXq7NbJi5YKwzl4PP4Rqe9Vy8-8iYODCFhweFHzwU07P83lw0N9aaaOxaWhqY2_nykedKTqJVyAO94inZY2h2nyhkwDvoF56gYXj-l45ZGjHVZYlmKcenTFkqWBKzxMciyNGCXtoEEzHZZopydIeKAEsx7bE0ZgrQORFM8IcvHlNER3aY7NY5QAGxJJMKsZKEJYAlmQ6ZjDBHp1S7wIqAOPITsuqGyz0nGOElQFYsAZPyKN4EFUV7PYLk8GqSCgjoUYliSjFJVJAz0cRRAfEcU2sEhNwBQs3VjoAf2jlCAgGtbi29iusG1hwrw80hxDskdXywObtMk_TSZ7pL7RHXrTiCkbWiQD4ghRy1CXgfhuTRwRQBSWx2rDVkSWdKYNBTwYLopDxK1BDySKpCLKq_7kMVa0Sn6jHQmaAWhFGUIys-jsNsw9YEEXdxLt80jFVE4L0BIGiaOR54DZcp4JUl_8scw-Aekj3OMvjOwHn0qwPzh0KcLxcLzwxq2w_o4P54ACbaaznjd5P7j_TIuwdnWDXMUaTA4jS8VxFhdMVROsY9Ao0_9SEdhqPZMl6dIBqrIZEfwtwdVyMqRy7CwFa0RFu3TR3zFYW6c0AkOvDX72X9xw3fdOaMc7qeVE7qaoQ464wtL5xzJhqhRs87qvww3B6-3vm-WQ43yl_DcmWt_LyxvfVx9_3zcn29XH1bvnpTrq5s_3i5-_Pb708vdr9s7qxt7Xx9d8GZ7aYz7Wm3vjbFXcTwe27R61nf5qEpTO6JQnm5bzMw5VJaI8CAh7HKbe6FKuqJTPQUz2NbGIvbpZTMjQovOq3-k7695EwWgTLKCs9YnvPQgpPGjfR6Npd-DuOwuezcrAWfr4fFxfmDyrzyT4irzqnRh37NaQ2eLtnr4OgPzI26A_wBFSm2CQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%B7%B1%E5%BA%A6%E5%BC%BA%E5%8C%96%E5%AD%A6%E4%B9%A0%E7%9A%84%E5%9B%9B%E5%90%91%E5%8D%8F%E5%90%8C%E4%B8%89%E7%BB%B4%E8%A3%85%E7%AE%B1%E6%96%B9%E6%B3%95&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E5%B0%B9%E6%98%8A&rft.au=%E9%99%88%E5%B8%86&rft.au=%E5%92%8C%E7%BA%A2%E6%9D%B0&rft.date=2024-12-01&rft.pub=%E8%A5%BF%E5%8D%97%E4%BA%A4%E9%80%9A%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2+%E6%88%90%E9%83%BD+611756%25%E8%A5%BF%E5%8D%97%E4%BA%A4%E9%80%9A%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%9C%BA%E4%B8%8E%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E5%AD%A6%E9%99%A2+%E6%88%90%E9%83%BD+611756&rft.issn=0254-4156&rft.volume=50&rft.issue=12&rft.spage=2420&rft.epage=2431&rft_id=info:doi/10.16383%2Fj.aas.c240124&rft.externalDocID=zdhxb202412008
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg