基于深度强化学习的四向协同三维装箱方法
物流作为现代经济的重要组成部分,在国民经济和社会发展中发挥着重要作用.物流中的三维装箱问题(Three-dimensional bin packing problem,3D-BPP)是提高物流运作效率必须解决的关键难题之一.深度强化学习(Deep rein-forcement learning,DRL)具有强大的学习与决策能力,基于DRL的三维装箱方法(Three-dimensional bin packing method based on DRL,DRL-3DBP)已成为智能物流领域的研究热点之一.现有DRL-3DBP面对大尺寸容器3D-BPP时难以达成动作空间、计算复杂性与探索能力之间的...
        Saved in:
      
    
          | Published in | 自动化学报 Vol. 50; no. 12; pp. 2420 - 2431 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | Chinese | 
| Published | 
            西南交通大学信息科学与技术学院 成都 611756%西南交通大学计算机与人工智能学院 成都 611756
    
        01.12.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0254-4156 | 
| DOI | 10.16383/j.aas.c240124 | 
Cover
| Abstract | 物流作为现代经济的重要组成部分,在国民经济和社会发展中发挥着重要作用.物流中的三维装箱问题(Three-dimensional bin packing problem,3D-BPP)是提高物流运作效率必须解决的关键难题之一.深度强化学习(Deep rein-forcement learning,DRL)具有强大的学习与决策能力,基于DRL的三维装箱方法(Three-dimensional bin packing method based on DRL,DRL-3DBP)已成为智能物流领域的研究热点之一.现有DRL-3DBP面对大尺寸容器3D-BPP时难以达成动作空间、计算复杂性与探索能力之间的平衡.为此,提出一种四向协同装箱(Four directional cooperative packing,FDCP)方法:两阶段策略网络接收旋转后的容器状态,生成4个方向的装箱策略;根据由4个策略采样而得的动作更新对应的4个状态,选取其中价值最大的对应动作为装箱动作.FDCP在压缩动作空间、减小计算复杂性的同时,鼓励智能体对4个方向合理装箱位置的探索.实验结果表明,FDCP在100 × 100大尺寸容器以及20、30、50箱子数量的装箱问题上实现了1.2%~2.9%的空间利用率提升. | 
    
|---|---|
| AbstractList | 物流作为现代经济的重要组成部分,在国民经济和社会发展中发挥着重要作用.物流中的三维装箱问题(Three-dimensional bin packing problem,3D-BPP)是提高物流运作效率必须解决的关键难题之一.深度强化学习(Deep rein-forcement learning,DRL)具有强大的学习与决策能力,基于DRL的三维装箱方法(Three-dimensional bin packing method based on DRL,DRL-3DBP)已成为智能物流领域的研究热点之一.现有DRL-3DBP面对大尺寸容器3D-BPP时难以达成动作空间、计算复杂性与探索能力之间的平衡.为此,提出一种四向协同装箱(Four directional cooperative packing,FDCP)方法:两阶段策略网络接收旋转后的容器状态,生成4个方向的装箱策略;根据由4个策略采样而得的动作更新对应的4个状态,选取其中价值最大的对应动作为装箱动作.FDCP在压缩动作空间、减小计算复杂性的同时,鼓励智能体对4个方向合理装箱位置的探索.实验结果表明,FDCP在100 × 100大尺寸容器以及20、30、50箱子数量的装箱问题上实现了1.2%~2.9%的空间利用率提升. | 
    
| Abstract_FL | As an important part of the modern economy,logistics plays an important role in the national economy and social development.The three-dimensional bin packing problem(3D-BPP)in logistics is one of the key prob-lems that must be solved to improve the efficiency of logistics operations.Deep reinforcement learning(DRL)has a powerful learning and decision-making ability,and the three-dimensional bin packing method based on DRL(DRL-3DBP)has become one of the research hotspots in the field of intelligent logistics.The existing DRL-3DBPs have difficulty in striking a balance between the action space,computational complexity,and exploration capability when solving 3D-BPP with large-size bins.To this end,this paper proposes a four directional cooperative packing(FD-CP)method.The two-stage policy network receives the rotated bin states and generates four directional packing policies.Based on the actions sampled from the four policies,the four states are updated accordingly,and the ac-tion corresponding to the highest value is selected as the packing action.FDCP encourages agent to explore reason-able packing positions in all four directions while compressing the action space and reducing computational com-plexity.Experimental results show that FDCP achieves 1.2%~2.9%improvement in space utilization on the pack-ing problem with 100 × 100 large-sized bin and the numbers of 20,30,and 50 items. | 
    
| Author | 陈帆 尹昊 和红杰  | 
    
| AuthorAffiliation | 西南交通大学信息科学与技术学院 成都 611756%西南交通大学计算机与人工智能学院 成都 611756 | 
    
| AuthorAffiliation_xml | – name: 西南交通大学信息科学与技术学院 成都 611756%西南交通大学计算机与人工智能学院 成都 611756 | 
    
| Author_FL | CHEN Fan HE Hong-Jie YIN Hao  | 
    
| Author_FL_xml | – sequence: 1 fullname: YIN Hao – sequence: 2 fullname: CHEN Fan – sequence: 3 fullname: HE Hong-Jie  | 
    
| Author_xml | – sequence: 1 fullname: 尹昊 – sequence: 2 fullname: 陈帆 – sequence: 3 fullname: 和红杰  | 
    
| BookMark | eNotzT9LAzEYgPEMFay1qx_B7c73TXJ3ySjFf1Bw0bkkuUQtcgUPUZx1EKrWwQ52UBC6KRQF7enHufT8GAo6PdvvWSC1rJdZQpYQQoyZYCvdUKk8NJQDUl4jdaARDzhG8Txp5vmBBkAEKhHrRPqHoiyuZ-8TX4z9V-H7Q_88LqeP1f25H4384NZf3fhBv_y4rD7fvp8uqpfJbDidvd4tkjmnDnPb_G-D7K6v7bQ2g_b2xlZrtR3kCCiC1DmL1jCdagNxKsGgVQwSIayOBaMskcYaYDJysYqd5CaxqbYIkEhhtGQNsvznnqjMqWyv0-0dH2W_x85Zun-qKVCOFECwHxWlX1M | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| DBID | 2B. 4A8 92I 93N PSX TCJ  | 
    
| DOI | 10.16383/j.aas.c240124 | 
    
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ)  | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| DocumentTitle_FL | A Four Directional Cooperative Three-dimensional Packing Method Based on Deep Reinforcement Learning | 
    
| EndPage | 2431 | 
    
| ExternalDocumentID | zdhxb202412008 | 
    
| GroupedDBID | --K -0Y .~1 0R~ 1B1 1~. 1~5 2B. 4.4 457 4A8 4G. 5GY 5VS 5XA 5XJ 7-5 71M 8P~ 92H 92I 93N AAIKJ AALRI AAQFI AAXUO ABJNI ABWVN ACGFS ACRPL ADEZE ADNMO ADTZH AECPX AEKER AFTJW AGHFR AGYEJ AITUG ALMA_UNASSIGNED_HOLDINGS BLXMC CCEZO CS3 CUBFJ CW9 EBS EJD EO8 EO9 EP2 EP3 FDB FEDTE FNPLU GBLVA HVGLF HZ~ IHE J1W JJJVA M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PSX Q38 ROL RPZ SDF SDG SES TCJ TGT U1G U5S  | 
    
| ID | FETCH-LOGICAL-s1018-dffe1ec3bdbc06d90c1ea30788eb6832379cec0395f6a6f94c7edbe100798cb93 | 
    
| ISSN | 0254-4156 | 
    
| IngestDate | Thu May 29 04:10:31 EDT 2025 | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 12 | 
    
| Keywords | 四向协同装箱 组合优化问题 深度强化学习 Three-dimensional bin packing problem(3D-BPP) combinatorial optimization problem deep reinforce-ment learning(DRL) 三维装箱问题 four directional cooperative packing(FDCP)  | 
    
| Language | Chinese | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-s1018-dffe1ec3bdbc06d90c1ea30788eb6832379cec0395f6a6f94c7edbe100798cb93 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | wanfang_journals_zdhxb202412008 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-12-01 | 
    
| PublicationDateYYYYMMDD | 2024-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | 自动化学报 | 
    
| PublicationTitle_FL | Acta Automatica Sinica | 
    
| PublicationYear | 2024 | 
    
| Publisher | 西南交通大学信息科学与技术学院 成都 611756%西南交通大学计算机与人工智能学院 成都 611756 | 
    
| Publisher_xml | – name: 西南交通大学信息科学与技术学院 成都 611756%西南交通大学计算机与人工智能学院 成都 611756 | 
    
| SSID | ssib001102911 ssib006576350 ssib051375349 ssib007293330 ssj0059721 ssib007290157 ssib023646446 ssib005904210  | 
    
| Score | 2.4957244 | 
    
| Snippet | 物流作为现代经济的重要组成部分,在国民经济和社会发展中发挥着重要作用.物流中的三维装箱问题(Three-dimensional bin packing problem,3D-BPP)是提高物流运作效率必须解... | 
    
| SourceID | wanfang | 
    
| SourceType | Aggregation Database | 
    
| StartPage | 2420 | 
    
| Title | 基于深度强化学习的四向协同三维装箱方法 | 
    
| URI | https://d.wanfangdata.com.cn/periodical/zdhxb202412008 | 
    
| Volume | 50 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0254-4156 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0059721 providerName: Elsevier  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQwMKq2F3pAPMWbHvCpCuThOPbR2c1SIeDUot6qOPHS0yLRrYR6hgNSgXKgB3oACak3kCqQoAuf07R8BjOTtJuWStBKqyi2Z8YzHscz9tpjx7kFXq7NbJi5YKwzl4PP4Rqe9Vy8-8iYODCFhweFHzwU07P83lw0N9aaaOxaWhqY2_nykedKTqJVyAO94inZY2h2nyhkwDvoF56gYXj-l45ZGjHVZYlmKcenTFkqWBKzxMciyNGCXtoEEzHZZopydIeKAEsx7bE0ZgrQORFM8IcvHlNER3aY7NY5QAGxJJMKsZKEJYAlmQ6ZjDBHp1S7wIqAOPITsuqGyz0nGOElQFYsAZPyKN4EFUV7PYLk8GqSCgjoUYliSjFJVJAz0cRRAfEcU2sEhNwBQs3VjoAf2jlCAgGtbi29iusG1hwrw80hxDskdXywObtMk_TSZ7pL7RHXrTiCkbWiQD4ghRy1CXgfhuTRwRQBSWx2rDVkSWdKYNBTwYLopDxK1BDySKpCLKq_7kMVa0Sn6jHQmaAWhFGUIys-jsNsw9YEEXdxLt80jFVE4L0BIGiaOR54DZcp4JUl_8scw-Aekj3OMvjOwHn0qwPzh0KcLxcLzwxq2w_o4P54ACbaaznjd5P7j_TIuwdnWDXMUaTA4jS8VxFhdMVROsY9Ao0_9SEdhqPZMl6dIBqrIZEfwtwdVyMqRy7CwFa0RFu3TR3zFYW6c0AkOvDX72X9xw3fdOaMc7qeVE7qaoQ464wtL5xzJhqhRs87qvww3B6-3vm-WQ43yl_DcmWt_LyxvfVx9_3zcn29XH1bvnpTrq5s_3i5-_Pb708vdr9s7qxt7Xx9d8GZ7aYz7Wm3vjbFXcTwe27R61nf5qEpTO6JQnm5bzMw5VJaI8CAh7HKbe6FKuqJTPQUz2NbGIvbpZTMjQovOq3-k7695EwWgTLKCs9YnvPQgpPGjfR6Npd-DuOwuezcrAWfr4fFxfmDyrzyT4irzqnRh37NaQ2eLtnr4OgPzI26A_wBFSm2CQ | 
    
| linkProvider | Elsevier | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%B7%B1%E5%BA%A6%E5%BC%BA%E5%8C%96%E5%AD%A6%E4%B9%A0%E7%9A%84%E5%9B%9B%E5%90%91%E5%8D%8F%E5%90%8C%E4%B8%89%E7%BB%B4%E8%A3%85%E7%AE%B1%E6%96%B9%E6%B3%95&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E5%B0%B9%E6%98%8A&rft.au=%E9%99%88%E5%B8%86&rft.au=%E5%92%8C%E7%BA%A2%E6%9D%B0&rft.date=2024-12-01&rft.pub=%E8%A5%BF%E5%8D%97%E4%BA%A4%E9%80%9A%E5%A4%A7%E5%AD%A6%E4%BF%A1%E6%81%AF%E7%A7%91%E5%AD%A6%E4%B8%8E%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2+%E6%88%90%E9%83%BD+611756%25%E8%A5%BF%E5%8D%97%E4%BA%A4%E9%80%9A%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%9C%BA%E4%B8%8E%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD%E5%AD%A6%E9%99%A2+%E6%88%90%E9%83%BD+611756&rft.issn=0254-4156&rft.volume=50&rft.issue=12&rft.spage=2420&rft.epage=2431&rft_id=info:doi/10.16383%2Fj.aas.c240124&rft.externalDocID=zdhxb202412008 | 
    
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg |