基于深度置信网络的多模态过程故障评估方法及应用

传统的多模态过程故障等级评估方法对模态之间的共性特征考虑较少,导致当被评估模态故障信息不充分时,评估的准确性较低.针对此问题,首先,提出一种共性-个性深度置信网络(Common and specific deep belief network,CS-DBN),该网络充分利用深度置信网络(Deep belief network,DBN)的深度分层特征提取能力,通过度量多模态数据间分布的相似性和差异性,进一步得到能够反映多模态过程共有信息的共性特征以及反映每个模态独有信息的个性特征;其次,基于CS-DBN,利用多模态过程的已知故障等级数据生成多模态共性-个性特征集,通过加权逻辑回归构建故障等级评估...

Full description

Saved in:
Bibliographic Details
Published in自动化学报 Vol. 50; no. 1; pp. 89 - 102
Main Authors 张凯, 杨朋澄, 彭开香, 陈志文
Format Journal Article
LanguageChinese
Published 工业过程知识自动化教育部重点实验室 北京 100083%北京科技大学自动化学院 北京 100083%中南大学自动化学院 长沙 410083 2024
北京科技大学自动化学院 北京 100083
Subjects
Online AccessGet full text
ISSN0254-4156
DOI10.16383/j.aas.c230156

Cover

Abstract 传统的多模态过程故障等级评估方法对模态之间的共性特征考虑较少,导致当被评估模态故障信息不充分时,评估的准确性较低.针对此问题,首先,提出一种共性-个性深度置信网络(Common and specific deep belief network,CS-DBN),该网络充分利用深度置信网络(Deep belief network,DBN)的深度分层特征提取能力,通过度量多模态数据间分布的相似性和差异性,进一步得到能够反映多模态过程共有信息的共性特征以及反映每个模态独有信息的个性特征;其次,基于CS-DBN,利用多模态过程的已知故障等级数据生成多模态共性-个性特征集,通过加权逻辑回归构建故障等级评估模型;最后,将所提方法应用于带钢热连轧生产过程的故障等级评估中.应用结果表明,随着多模态故障等级数据的增加,所提方法的评估准确率逐渐增加,当故障信息充足时,评估准确率可达98.75%;故障信息不足时,与传统方法相比,评估准确率提升近10%.
AbstractList 传统的多模态过程故障等级评估方法对模态之间的共性特征考虑较少,导致当被评估模态故障信息不充分时,评估的准确性较低.针对此问题,首先,提出一种共性-个性深度置信网络(Common and specific deep belief network,CS-DBN),该网络充分利用深度置信网络(Deep belief network,DBN)的深度分层特征提取能力,通过度量多模态数据间分布的相似性和差异性,进一步得到能够反映多模态过程共有信息的共性特征以及反映每个模态独有信息的个性特征;其次,基于CS-DBN,利用多模态过程的已知故障等级数据生成多模态共性-个性特征集,通过加权逻辑回归构建故障等级评估模型;最后,将所提方法应用于带钢热连轧生产过程的故障等级评估中.应用结果表明,随着多模态故障等级数据的增加,所提方法的评估准确率逐渐增加,当故障信息充足时,评估准确率可达98.75%;故障信息不足时,与传统方法相比,评估准确率提升近10%.
Abstract_FL Traditional fault grade evaluation methods for multimode processes have not well consider the common features embedded in multimode process data,which led to the low evaluation accuracy for cases where there lacks of fault grade data for the operating mode under evaluation.To solve this problem,firstly,this paper proposes a common and specific deep belief network(CS-DBN),which fully utilizes the hierarchical feature extraction ability of deep belief network(DBN)to automatically obtain the common features that reflect the common information of multimode operating processes by measuring the similarity and difference in the distribution of multimode operat-ing data,and obtain the specific features reflecting the unique information of each operating mode;Secondly,on the basis of CS-DBN model,the known fault grade data are gathered to formulate a multimode common and specific feature database,and the weighted logical regression method is used to develop a fault grade evaluation model;Fi-nally,the proposed method is applied to the fault grade evaluation problem in a hot rolling mill process.The applic-ation results show that,with the increasing amount of multimode fault grade data,the evaluation accuracy of the proposed method gradually increases.For cases that the fault information is sufficient,the evaluation accuracy can reach up to 98.75%;For cases that the fault information is less sufficient,the evaluation accuracy by the proposed method improves nearly 10%compared with traditional methods.
Author 杨朋澄
陈志文
张凯
彭开香
AuthorAffiliation 北京科技大学自动化学院 北京 100083;工业过程知识自动化教育部重点实验室 北京 100083%北京科技大学自动化学院 北京 100083%中南大学自动化学院 长沙 410083
AuthorAffiliation_xml – name: 北京科技大学自动化学院 北京 100083;工业过程知识自动化教育部重点实验室 北京 100083%北京科技大学自动化学院 北京 100083%中南大学自动化学院 长沙 410083
Author_FL PENG Kai-Xiang
YANG Peng-Cheng
ZHANG Kai
CHEN Zhi-Wen
Author_FL_xml – sequence: 1
  fullname: ZHANG Kai
– sequence: 2
  fullname: YANG Peng-Cheng
– sequence: 3
  fullname: PENG Kai-Xiang
– sequence: 4
  fullname: CHEN Zhi-Wen
Author_xml – sequence: 1
  fullname: 张凯
– sequence: 2
  fullname: 杨朋澄
– sequence: 3
  fullname: 彭开香
– sequence: 4
  fullname: 陈志文
BookMark eNotjT1Lw0AYgG-oYK1d_Qluie97l1zSUUr9gIKLzuUuuahFUjCI4qRQERQUoXUIBSmIZPIDBzFa-meSXP0XBnR6nul5Fkgl7IWKkCUEEzlz2UrXFCIyPcoAbV4hVaC2ZVilz5N6FO1LAESgDcQqaeUPaZbeFB9vefqkJ8_ZdKwnd_prpON-_hgXybg4O59NL3VyXQwvfuLR7KWffb8W95_F-zC_vcrTgR4ki2QuEAeRqv-zRnbWWtvNDaO9tb7ZXG0bEQI6hieo9AV4HiI6wDkwx5U0kJw2FARKCs8XjJbKlSul6zQUejaV3HeDwJaUsRpZ_useizAQ4W6n2zs6DMtj59TfO5EUqAUI4LBfu5hoBw
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16383/j.aas.c230156
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL A Deep Belief Network-based Fault Evaluation Method for Multimode Processes and Its Applications
EndPage 102
ExternalDocumentID zdhxb202401007
GroupedDBID --K
-0Y
.~1
0R~
1B1
1~.
1~5
2B.
4.4
457
4A8
4G.
5GY
5VS
5XA
5XJ
7-5
71M
8P~
92H
92I
93N
AAIKJ
AALRI
AAQFI
AAXUO
ABJNI
ABWVN
ACGFS
ACRPL
ADEZE
ADNMO
ADTZH
AECPX
AEKER
AFTJW
AGHFR
AGYEJ
AITUG
ALMA_UNASSIGNED_HOLDINGS
BLXMC
CCEZO
CS3
CUBFJ
CW9
EBS
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FNPLU
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PSX
Q38
ROL
RPZ
SDF
SDG
SES
TCJ
TGT
U1G
U5S
ID FETCH-LOGICAL-s1017-ca2bda0cc11170660378b2fb629e0febacda32e0f6e8bb879e1c52b6d8ff5b233
ISSN 0254-4156
IngestDate Thu May 29 04:10:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords common and specific features
fault grade evaluation
故障等级评估
带钢热连轧
深度置信网络
deep belief network(DBN)
多模态过程
共性-个性特征
hot rolling mill
Multimode processes
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1017-ca2bda0cc11170660378b2fb629e0febacda32e0f6e8bb879e1c52b6d8ff5b233
PageCount 14
ParticipantIDs wanfang_journals_zdhxb202401007
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle 自动化学报
PublicationTitle_FL Acta Automatica Sinica
PublicationYear 2024
Publisher 工业过程知识自动化教育部重点实验室 北京 100083%北京科技大学自动化学院 北京 100083%中南大学自动化学院 长沙 410083
北京科技大学自动化学院 北京 100083
Publisher_xml – name: 工业过程知识自动化教育部重点实验室 北京 100083%北京科技大学自动化学院 北京 100083%中南大学自动化学院 长沙 410083
– name: 北京科技大学自动化学院 北京 100083
SSID ssib001102911
ssib006576350
ssib051375349
ssib007293330
ssj0059721
ssib007290157
ssib023646446
ssib005904210
Score 2.4637399
Snippet 传统的多模态过程故障等级评估方法对模态之间的共性特征考虑较少,导致当被评估模态故障信息不充分时,评估的准确性较低.针对此问题,首先,提出一种共性-个性深度置信网...
SourceID wanfang
SourceType Aggregation Database
StartPage 89
Title 基于深度置信网络的多模态过程故障评估方法及应用
URI https://d.wanfangdata.com.cn/periodical/zdhxb202401007
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0254-4156
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0059721
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LahRBcAibix7EJ77NwT6F0Xl1T_exZ3fWIOopkdzCPHbMaQWTgOSkEBEUFCHxEAISCJKTDzyIqyE_k92Nf2FVTcedJWKiuQw93dX1bLqqi35Y1vUwTMEr-S3byYPMhvVGYauUZ3Yuk0BJh-eJxIPCd--Jiang9jSfHqltVHYtLcynN7LFP54r-R-rQh3YFU_J_oNlfyOFCiiDfeELFobvoWzMYs5Uk0WaxQF-ZcxiwaKQRS42QY0WLIbfBtMxwTSZdk2NKgsRU3UsKOgeYC8dYBnwaEnAAjdDSChI7C5DBIYmGWGT4kxyFivsgnigS5PwAK06ixyCAZYUMeYjPJCQAKMNhyog6gHgrAbKiApoaQIDYKCIhTpiQyYbJJqgJr43aghlnWmHYKF3c9ACfDQIi0BGS-6jmMlgqHMDMZdYQGqQC6goNQABQRWTxAsoQ4VGPuPNTfbEG-RNCRAY4aQRSZrdr8cQrYgwpfrEX4UnpQMXCOOxyEOmpE8wCnvJBiLEJkWaipmKSRKNGMoaHYzvYQzN2NH1cZdCZebx_W3EbEhjhnQuHTNUoHJgjsOYjDSovQPok7JKU4A8Kjw6NYVqA8Wj2T2oHQ_wwim_4gg9HtiYaKh67fK64qHZqXTB5YtUJphz6Tj__jgBvI5PgUKSwAQAy_A97MN3ry_ms49THDaOS1dWjHqY9atZo7eiO_f1YNkBZFTFT3IFrrASVguO1z4O_kPcvFDZbQD_vj9YxuObDqKSpuGuH3If0yRlhMnxxi3KHRu9mMtoUaibQyLRScR2kbQfVILmyZPWCbPaHdPl1HXKGlmcPW0dr9yBesaKu-86O51Xva-fu533_a0PO9vr_a03_e9r_dWl7sZqb3O99-Tp7vbz_ubL3sqzn6trux-Xdn586r391vuy0n39ottZ7i9vnrWmmvFkfcI2b7vYcxgE2FnipXniZJmLT18J4fihTL0iFZ5qOUUrTbI88T0oipZMUxmqlptxLxW5LAqeer5_zqq1H7Zb562xQsgcdMKFEkXgySJ1MYsEOi2cIit8dcG6ZpQwY-buuZlhw148EOKSdQzLZe71slWbf7TQugKrkfn0qhkMvwCx2d7p
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%B7%B1%E5%BA%A6%E7%BD%AE%E4%BF%A1%E7%BD%91%E7%BB%9C%E7%9A%84%E5%A4%9A%E6%A8%A1%E6%80%81%E8%BF%87%E7%A8%8B%E6%95%85%E9%9A%9C%E8%AF%84%E4%BC%B0%E6%96%B9%E6%B3%95%E5%8F%8A%E5%BA%94%E7%94%A8&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E5%BC%A0%E5%87%AF&rft.au=%E6%9D%A8%E6%9C%8B%E6%BE%84&rft.au=%E5%BD%AD%E5%BC%80%E9%A6%99&rft.au=%E9%99%88%E5%BF%97%E6%96%87&rft.date=2024&rft.pub=%E5%B7%A5%E4%B8%9A%E8%BF%87%E7%A8%8B%E7%9F%A5%E8%AF%86%E8%87%AA%E5%8A%A8%E5%8C%96%E6%95%99%E8%82%B2%E9%83%A8%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4+%E5%8C%97%E4%BA%AC+100083%25%E5%8C%97%E4%BA%AC%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E9%99%A2+%E5%8C%97%E4%BA%AC+100083%25%E4%B8%AD%E5%8D%97%E5%A4%A7%E5%AD%A6%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E9%99%A2+%E9%95%BF%E6%B2%99+410083&rft.issn=0254-4156&rft.volume=50&rft.issue=1&rft.spage=89&rft.epage=102&rft_id=info:doi/10.16383%2Fj.aas.c230156&rft.externalDocID=zdhxb202401007
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg