2型糖尿病患者低血糖风险预测模型的系统评价

目的:系统评价2型糖尿病(T2DM)患者低血糖风险预测模型。方法:检索中国期刊全文数据库(CNKI)、万方数据知识服务平台、美国国立医学图书馆数据库(PubMed)、Cochrane循证医学数据库(Cochrane Library)、医学文摘数据库(EMbase)及Web of Science数据库从建库至2022年7月前发表的T2DM患者低血糖风险预测模型相关文献。由研究者独立筛选文献,并提取文献中涉及模型的曲线下面积(AUC)及其95%CI、校准方法和预测因子,使用预测模型研究的偏倚风险评估工具(PROBAST)对模型进行质量评价。使用Revman5.3软件对模型中预测因子的预测价值进行M...

Full description

Saved in:
Bibliographic Details
Published in中华糖尿病杂志 Vol. 15; no. 3; pp. 244 - 251
Main Authors 詹立睿, 张紫薇, 宋萍, 杨雨菡, 曾冬阳
Format Journal Article
LanguageChinese
Published 海南医学院国际护理学院,海口 570100%海南医学院第一附属医院教务科,海口 570100 01.03.2023
Subjects
Online AccessGet full text
ISSN1674-5809
DOI10.3760/cma.j.cn115791-20220720-00347

Cover

Abstract 目的:系统评价2型糖尿病(T2DM)患者低血糖风险预测模型。方法:检索中国期刊全文数据库(CNKI)、万方数据知识服务平台、美国国立医学图书馆数据库(PubMed)、Cochrane循证医学数据库(Cochrane Library)、医学文摘数据库(EMbase)及Web of Science数据库从建库至2022年7月前发表的T2DM患者低血糖风险预测模型相关文献。由研究者独立筛选文献,并提取文献中涉及模型的曲线下面积(AUC)及其95%CI、校准方法和预测因子,使用预测模型研究的偏倚风险评估工具(PROBAST)对模型进行质量评价。使用Revman5.3软件对模型中预测因子的预测价值进行Meta分析。结果:共纳入9篇文献,包含12个模型,其中11个模型的AUC>0.7,7个模型同时报告了AUC的95%CI,7个模型进行了模型校准。PROBAST结果显示,纳入的9篇文献中,有1篇为低偏倚风险,其余8篇均为高偏倚风险;在模型适用性中,仅有1篇为低适用性。Meta分析结果显示,胰岛素的使用(OR=6.11,95%CI 5.41~6.91)、体重指数(OR=2.69,95%CI 1.75~5.10)、糖尿病病程(OR=3.39,95%CI 2.37~4.85)、既往低血糖史(OR=9.73,95%CI 8.72~10.85)、磺脲类药物的使用(OR=1.30,95%CI 1.30~1.31)是预测模型中位列前5的预测因子。结论:T2DM患者低血糖风险预测模型尚存在不足,未来预测模型的建立可重点关注胰岛素的使用、体重指数、糖尿病病程、既往低血糖史、磺脲类药物的使用等预测因子。
AbstractList 目的:系统评价2型糖尿病(T2DM)患者低血糖风险预测模型。方法:检索中国期刊全文数据库(CNKI)、万方数据知识服务平台、美国国立医学图书馆数据库(PubMed)、Cochrane循证医学数据库(Cochrane Library)、医学文摘数据库(EMbase)及Web of Science数据库从建库至2022年7月前发表的T2DM患者低血糖风险预测模型相关文献。由研究者独立筛选文献,并提取文献中涉及模型的曲线下面积(AUC)及其95%CI、校准方法和预测因子,使用预测模型研究的偏倚风险评估工具(PROBAST)对模型进行质量评价。使用Revman5.3软件对模型中预测因子的预测价值进行Meta分析。结果:共纳入9篇文献,包含12个模型,其中11个模型的AUC>0.7,7个模型同时报告了AUC的95%CI,7个模型进行了模型校准。PROBAST结果显示,纳入的9篇文献中,有1篇为低偏倚风险,其余8篇均为高偏倚风险;在模型适用性中,仅有1篇为低适用性。Meta分析结果显示,胰岛素的使用(OR=6.11,95%CI 5.41~6.91)、体重指数(OR=2.69,95%CI 1.75~5.10)、糖尿病病程(OR=3.39,95%CI 2.37~4.85)、既往低血糖史(OR=9.73,95%CI 8.72~10.85)、磺脲类药物的使用(OR=1.30,95%CI 1.30~1.31)是预测模型中位列前5的预测因子。结论:T2DM患者低血糖风险预测模型尚存在不足,未来预测模型的建立可重点关注胰岛素的使用、体重指数、糖尿病病程、既往低血糖史、磺脲类药物的使用等预测因子。
Abstract_FL Objective:To systematically evaluate hypoglycemic risk prediction models in patients with type 2 diabetes mellitus (T2DM).Methods:The Cochrane Library, PubMed, Embase, Web of Science, China national knowledge infrastructure (CNKI), and Wan Fang Databases were searched to collect the studies on T2DM hypoglycemia risk prediction model from inception to July 2022. The investigators independently screened the literatures and extracted the area under the curve (AUC) and its 95%CI, calibration method and predictors of the models involved in the literature using the prediction model risk of bias assessment tool (PROBAST) for quality evaluation. Meta-analysis of the predictive value of the predictors in the model was performed using Revman 5.3.Results:A total of 9 literatures containing 12 models were included, 11 of which had AUC>0.7, 7 models reported a 95%CI of AUC, and 7 models performed model calibration. PROBAST results showed that 1 of the 9 included literatures was at low risk of bias and the remaining 8 were at high risk of bias. Among the model applicability, only 1 was at low applicability. Meta-analysis showed that insulin use (OR=6.11, 95%CI 5.41-6.91), body mass index (OR=2.69, 95%CI 1.75-5.10), duration of diabetes (OR=3.39, 95%CI 2.37-4.85), previous history of hypoglycemia (OR=9.73, 95%CI 8.72-10.85), and sulfonylurea use (OR=1.30, 95%CI 1.30-1.31) were the top 5 predictors in the prediction model.Conclusions:The prediction model of hypoglycemic risk in T2DM patients was still inadequate, and the future prediction model should focus on such predictors as insulin use, body mass index, duration of diabetes, previous history of hypoglycemia, and use of sulfonylureas.
Author 张紫薇
曾冬阳
宋萍
詹立睿
杨雨菡
AuthorAffiliation 海南医学院国际护理学院,海口 570100%海南医学院第一附属医院教务科,海口 570100
AuthorAffiliation_xml – name: 海南医学院国际护理学院,海口 570100%海南医学院第一附属医院教务科,海口 570100
Author_FL Zeng Dongyang
Yang Yuhan
Zhan Lirui
Zhang Ziwei
Song Ping
Author_FL_xml – sequence: 1
  fullname: Zhan Lirui
– sequence: 2
  fullname: Zhang Ziwei
– sequence: 3
  fullname: Song Ping
– sequence: 4
  fullname: Yang Yuhan
– sequence: 5
  fullname: Zeng Dongyang
Author_xml – sequence: 1
  fullname: 詹立睿
– sequence: 2
  fullname: 张紫薇
– sequence: 3
  fullname: 宋萍
– sequence: 4
  fullname: 杨雨菡
– sequence: 5
  fullname: 曾冬阳
BookMark eNotj7tKA0EYhaeIYIx5DO12_f-ZnZmdwkKCNwjYaB129qIGnYCrCFZBNlUgZUQLJabRSiGIxSK-TLKXt3BFqwOHj_NxVkjN9ExIyBqCzaSADf_cs7u2bxC5VGhRoBQkBQuAObJG6iikY3EX1DJpxvGpBkQFCgDrZJMuHof5bLx4_87vBtnttOgP5l-jYtKvynI6Ku9fy-ck-xhmL5Nf8iHJZ2mePhVvyTz9XCVLkXcWh83_bJCjne3D1p7VPtjdb221rRgBhaXdQDrgR5L7WjOHMgwpdV2uXQ8FuBgorUMUPOIqUj5g4ISeChwmUHLEQLIGWf_bvfZM5JnjTrd3dWEqY-fm5NLo6jADBiDYD8_VYv4
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3760/cma.j.cn115791-20220720-00347
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL A systematic review of hypoglycemia risk prediction models in patients with type 2 diabetes mellitus
EndPage 251
ExternalDocumentID zhtnb202303006
GrantInformation_xml – fundername: 海南省自然科学基金; 海南省教育厅科研基金; Natural Science Foundation of Hainan Province; Scientific Research Fund of Hainan Provincial Education Department
  funderid: (822RC692); (Hnky2022ZD-14); (822RC692); (Hnky2022ZD-14)
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CDYEO
PSX
TCJ
ID FETCH-LOGICAL-s1016-b8d740cf75cbb34231e22885b8a16081d9bbe165f59f9c01d4ea9d43617511d73
ISSN 1674-5809
IngestDate Thu May 29 03:54:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 糖尿病,2型
Diabetes mellitus, type 2
模型
Model
Risk prediction
Systematic review
系统评价
Hypoglycemia
低血糖
风险预测
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1016-b8d740cf75cbb34231e22885b8a16081d9bbe165f59f9c01d4ea9d43617511d73
PageCount 8
ParticipantIDs wanfang_journals_zhtnb202303006
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationTitle 中华糖尿病杂志
PublicationTitle_FL Chinese Journal of Diabetes Mellitus
PublicationYear 2023
Publisher 海南医学院国际护理学院,海口 570100%海南医学院第一附属医院教务科,海口 570100
Publisher_xml – name: 海南医学院国际护理学院,海口 570100%海南医学院第一附属医院教务科,海口 570100
SSID ssib011909001
ssib048413644
ssib007286532
ssib003003870
ssib051368295
Score 2.3397264
Snippet 目的:系统评价2型糖尿病(T2DM)患者低血糖风险预测模型。方法:检索中国期刊全文数据库(CNKI)、万方数据知识服务平台、美国国立医学图书馆数据库(PubMed)、Cochrane循证医...
SourceID wanfang
SourceType Aggregation Database
StartPage 244
Title 2型糖尿病患者低血糖风险预测模型的系统评价
URI https://d.wanfangdata.com.cn/periodical/zhtnb202303006
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  issn: 1674-5809
  databaseCode: ABDBF
  dateStart: 20150701
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssib011909001
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pa9RAFA9lC-JFFBX_24NzzJpMZiYzBw-Z3YTqwVMLvZUkm1gEV7Dby56KtKdCj4oelNqLnhSKeCjil2m722_hezPpJi2ltsISJm_ezLz3fsm8N2HmreM8Shm4Va6YW4qMuqzg3JUKLrkXlApWYyVNzQbZ52J2nj1b4AtTraeNXUsrg6ydD089V_I_qAINcMVTshdAdtIpEKAM-MIVEIbruTCmJOZExURqEodEB0QJpGiP6AQpKiSSk1gQSUkUkFjivgakMKK7RMZIiXwk1s0VcmKVIgrKylAokQz70dyMJUhkGjZHV5HhMf1oK48mKjFDJKaKIUWHzXDYEIGhi11JK9KZiqgu6oJVCVETF2oGUUQr5I30kURd4KpZoE2HRFZVhlzQCIaRYZMlsupADRiqW9eYkUFptIo2BbBlAjZofjWhQb1tzDznlcl0WKmnbKFjDMRR7UgcGdpiqREYS6mQi0hkzIoCidNaJagX9HlsrMTgHRi8IVaG5bBHKL-gPGDLDv4sSPiUWMGYMaaP2NfNJ63AVBzLWBWZpwT6Afn984va8JQiZC6XnjrmSnljygiaftEm-axCLGpzDJ_03rg_C165_FXaftnO-5gGSvnwwlPqhRTzHwQ2OeuJBOnDpUE_Q4zBX2Hy_WkaCkFbznSkuzppODPcqVE7pxDPZNeHqn2IjNXRHgy4ZxLCO1HHvhzuJDX_4jRR_ZJDKrEfnym0ORDYL9P-i0bsOnfVuVItOmciO4Ncc6aGS9edJ3T_08Zo593-jz-j9-sHb7fHq-t7vzfHW6tAPNzePPzw7fDL2sHPjYOvW8j5cW20szva_Tz-vra3--uGM5_Ec51Zt_ozFXcZP9C5meyFzMvLkOdZhmk__YJSKXkmU1_AuqCnsqzwBS-5KlXu-T1WpKrHAljhwJqsFwY3nVb_db-45cykRSEpKz1ZBD2I_1NJgxxm9VQEmVSZ8m47Dyt1F6vJcnnxOEh3_slx17lcv7b3nNbgzUpxH8L_QfagAvYvv8e3rw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=2%E5%9E%8B%E7%B3%96%E5%B0%BF%E7%97%85%E6%82%A3%E8%80%85%E4%BD%8E%E8%A1%80%E7%B3%96%E9%A3%8E%E9%99%A9%E9%A2%84%E6%B5%8B%E6%A8%A1%E5%9E%8B%E7%9A%84%E7%B3%BB%E7%BB%9F%E8%AF%84%E4%BB%B7&rft.jtitle=%E4%B8%AD%E5%8D%8E%E7%B3%96%E5%B0%BF%E7%97%85%E6%9D%82%E5%BF%97&rft.au=%E8%A9%B9%E7%AB%8B%E7%9D%BF&rft.au=%E5%BC%A0%E7%B4%AB%E8%96%87&rft.au=%E5%AE%8B%E8%90%8D&rft.au=%E6%9D%A8%E9%9B%A8%E8%8F%A1&rft.date=2023-03-01&rft.pub=%E6%B5%B7%E5%8D%97%E5%8C%BB%E5%AD%A6%E9%99%A2%E5%9B%BD%E9%99%85%E6%8A%A4%E7%90%86%E5%AD%A6%E9%99%A2%EF%BC%8C%E6%B5%B7%E5%8F%A3%E3%80%80570100%25%E6%B5%B7%E5%8D%97%E5%8C%BB%E5%AD%A6%E9%99%A2%E7%AC%AC%E4%B8%80%E9%99%84%E5%B1%9E%E5%8C%BB%E9%99%A2%E6%95%99%E5%8A%A1%E7%A7%91%EF%BC%8C%E6%B5%B7%E5%8F%A3%E3%80%80570100&rft.issn=1674-5809&rft.volume=15&rft.issue=3&rft.spage=244&rft.epage=251&rft_id=info:doi/10.3760%2Fcma.j.cn115791-20220720-00347&rft.externalDocID=zhtnb202303006
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzhtnb%2Fzhtnb.jpg