基于像素对比学习的图像超分辨率算法

目前,深度卷积神经网络(Convolutional neural network,CNN)已主导了单图像超分辨率(Single image super-resolution,SISR)技术的研究,并取得了很大进展.但是,SISR仍是一个开放性问题,重建的超分辨率(Super-resolution,SR)图像往往会出现模糊、纹理细节丢失和失真等问题.提出一个新的逐像素对比损失,在一个局部区域中,使SR图像的像素尽可能靠近对应的原高分辨率(High-resolution,HR)图像的像素,并远离局部区域中的其他像素,可改进SR图像的保真度和视觉质量.提出一个组合对比损失的渐进残差特征融合网络(Pr...

Full description

Saved in:
Bibliographic Details
Published in自动化学报 Vol. 50; no. 1; pp. 181 - 193
Main Authors 周登文, 刘子涵, 刘玉铠
Format Journal Article
LanguageChinese
Published 华北电力大学控制与计算机工程学院 北京 102206 2024
Subjects
Online AccessGet full text
ISSN0254-4156
DOI10.16383/j.aas.c230395

Cover

Abstract 目前,深度卷积神经网络(Convolutional neural network,CNN)已主导了单图像超分辨率(Single image super-resolution,SISR)技术的研究,并取得了很大进展.但是,SISR仍是一个开放性问题,重建的超分辨率(Super-resolution,SR)图像往往会出现模糊、纹理细节丢失和失真等问题.提出一个新的逐像素对比损失,在一个局部区域中,使SR图像的像素尽可能靠近对应的原高分辨率(High-resolution,HR)图像的像素,并远离局部区域中的其他像素,可改进SR图像的保真度和视觉质量.提出一个组合对比损失的渐进残差特征融合网络(Progressive residual feature fusion network,PRFFN).主要贡献有:1)提出一个通用的基于对比学习的逐像素损失函数,能够改进SR图像的保真度和视觉质量;2)提出一个轻量的多尺度残差通道注意力块(Multi-scale residual channel attention block,MRCAB),可以更好地提取和利用多尺度特征信息;3)提出一个空间注意力融合块(Spatial attention fuse block,SAFB),可以更好地利用邻近空间特征的相关性.实验结果表明,PRFFN显著优于其他代表性方法.
AbstractList 目前,深度卷积神经网络(Convolutional neural network,CNN)已主导了单图像超分辨率(Single image super-resolution,SISR)技术的研究,并取得了很大进展.但是,SISR仍是一个开放性问题,重建的超分辨率(Super-resolution,SR)图像往往会出现模糊、纹理细节丢失和失真等问题.提出一个新的逐像素对比损失,在一个局部区域中,使SR图像的像素尽可能靠近对应的原高分辨率(High-resolution,HR)图像的像素,并远离局部区域中的其他像素,可改进SR图像的保真度和视觉质量.提出一个组合对比损失的渐进残差特征融合网络(Progressive residual feature fusion network,PRFFN).主要贡献有:1)提出一个通用的基于对比学习的逐像素损失函数,能够改进SR图像的保真度和视觉质量;2)提出一个轻量的多尺度残差通道注意力块(Multi-scale residual channel attention block,MRCAB),可以更好地提取和利用多尺度特征信息;3)提出一个空间注意力融合块(Spatial attention fuse block,SAFB),可以更好地利用邻近空间特征的相关性.实验结果表明,PRFFN显著优于其他代表性方法.
Abstract_FL Deep convolutional neural network(CNN)has achieved great success in single image super-resolution(SISR).However,SISR is still an open issue,and reconstructed super-resolution(SR)images often suffer from blur-ring,loss of texture details and distortion.In this paper,a new pixel-wise contrastive loss is proposed to improve the fidelity and visual quality of SR images by making the pixels of SR images as close as possible to the corres-ponding pixels of the original high-resolution(HR)images and away from the other pixels in the local region.We also propose a progressive residual feature fusion network(PRFFN)with combined contrastive loss,and the main contributions include:1)A general pixel-wise loss function based on contrastive learning is proposed,which can im-prove the fidelity and visual quality of SR images;2)A lightweight multi-scale residual channel attention block(MRCAB)is proposed,which can better extract and utilize multi-scale feature information;3)A spatial attention fusion block(SAFB)is proposed,which can better utilize the correlation of neighboring spatial features.The experi-mental results demonstrate that PRFFN significantly outperforms other representative methods.
Author 刘玉铠
刘子涵
周登文
AuthorAffiliation 华北电力大学控制与计算机工程学院 北京 102206
AuthorAffiliation_xml – name: 华北电力大学控制与计算机工程学院 北京 102206
Author_FL LIU Yu-Kai
LIU Zi-Han
ZHOU Deng-Wen
Author_FL_xml – sequence: 1
  fullname: ZHOU Deng-Wen
– sequence: 2
  fullname: LIU Zi-Han
– sequence: 3
  fullname: LIU Yu-Kai
Author_xml – sequence: 1
  fullname: 周登文
– sequence: 2
  fullname: 刘子涵
– sequence: 3
  fullname: 刘玉铠
BookMark eNotjbtKA0EUQKeIYIxp_QS7Xe-dmd3slBJ8QcBG6zBPNcgGHESx9VnFJiJoYSqx0RSKkBT5mkw2n-GKVgdOcc4SqeTd3BKyghBjyjK21oml9LGmDJhIKqQKNOERxyRdJHXvjxQAIlCBWCUsvIyn4164vC--BmE4mg374f11OhoUT1fheVL6-fd1uLuZT96K3m3x8Tj7fFgmC04ee1v_Z43sb27sNbej1u7WTnO9FXkE5FHW4EI4zYR2gmqjVaqVNcaZlDNJgaM1SjJlJU8c6AaFDF1pU-cUGmoNq5HVv-6ZzJ3MD9qd7ulJXh7bF-bwXFGgHH5P7Ac6ZVsQ
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.16383/j.aas.c230395
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Pixel-wise Contrastive Learning for Single Image Super-resolution
EndPage 193
ExternalDocumentID zdhxb202401014
GroupedDBID --K
-0Y
.~1
0R~
1B1
1~.
1~5
2B.
4.4
457
4A8
4G.
5GY
5VS
5XA
5XJ
7-5
71M
8P~
92H
92I
93N
AAIKJ
AALRI
AAQFI
AAXUO
ABJNI
ABWVN
ACGFS
ACRPL
ADEZE
ADNMO
ADTZH
AECPX
AEKER
AFTJW
AGHFR
AGYEJ
AITUG
ALMA_UNASSIGNED_HOLDINGS
BLXMC
CCEZO
CS3
CUBFJ
CW9
EBS
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FNPLU
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PSX
Q38
ROL
RPZ
SDF
SDG
SES
TCJ
TGT
U1G
U5S
ID FETCH-LOGICAL-s1014-87499fc39cf92cdcb6cbeddfd643a2041edba3bea45f0c72081f0416ffb1d2ed3
ISSN 0254-4156
IngestDate Thu May 29 04:10:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords convolutional neural network(CNN)
注意力机制
contrastive learning
卷积神经网络
Image super-resolution
对比学习
图像超分辨率
attention mechan-ism
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1014-87499fc39cf92cdcb6cbeddfd643a2041edba3bea45f0c72081f0416ffb1d2ed3
PageCount 13
ParticipantIDs wanfang_journals_zdhxb202401014
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle 自动化学报
PublicationTitle_FL Acta Automatica Sinica
PublicationYear 2024
Publisher 华北电力大学控制与计算机工程学院 北京 102206
Publisher_xml – name: 华北电力大学控制与计算机工程学院 北京 102206
SSID ssib001102911
ssib006576350
ssib051375349
ssib007293330
ssj0059721
ssib007290157
ssib023646446
ssib005904210
Score 2.4728804
Snippet 目前,深度卷积神经网络(Convolutional neural network,CNN)已主导了单图像超分辨率(Single image...
SourceID wanfang
SourceType Aggregation Database
StartPage 181
Title 基于像素对比学习的图像超分辨率算法
URI https://d.wanfangdata.com.cn/periodical/zdhxb202401014
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR27bhQx0EouDRSIp3iTAlfRwe76sXbpvewRIaBKUCqifZLqkMhFQtfyrEIDQoKCVIgGUoCQkiJfk8vlM5jxOpxPROIhnSzv7Iw9j1t7xrseE3I9qAJVCV62S5g92rwGHy6rGYQqcVawvMwirnDv8N17cmGJ314Wy1PTD7yvltb7-Y1icOS-kv-xKsDArrhL9h8s-6tRAEAd7AslWBjKv7IxTQXVXZoYmnIsVYoQxajq0jSmCacmQIgBHE1TiRXNLWSeGmmptMWJqQZye0snNPHbUTSRVAkLUVRJC0mpUUgFPaoYKyalOsYuEkab8ywPXV7EBxxjbAvGEkKlQ7X0OJH2lji0v2UkdJ1oTZMEUYBiPG86hrRyrejAdg8_cQRKwyooQVPNQGR_tSMar3NaivlDRXasTDHqLBGOfVAP9geqjSfZTx1EWYWhapVtR6FuTDihJN2xRhM0AaCwtwA58RrUKLWJ5jw-rIlNZw6j50B6IzhE322MkP3ppsmzO_FYNXNH2Jxd49yQsDk48rcZDsZLZqe4LIO_LgSQzBl1Mmv4oFx9kqMC7WHM02QmiqWMWmTmVnLnvhk7zMCy9kZ4oWEQ9xxCKTBh4fg6xtfu3ntyuGZsHIDiaQTSW2AQIYNwGAP8xjcSmCvKrno6xbg0qijUzQmR7B66Xp31Hnru3uJJcsLFabOmeehOkanB6mly3MveeYaw4cedvZ2N4dPXo--bw63t_a03wy-f9rY3R--fDT_sAvzgx_PhqxcHu59HGy9HX9_tf3t7lix108XOQtudQdJeQ8WBs8C1rgumi1pHRVnkssirsqxL8OSzKOBhVeYZy6uMizoo4gg87Bqgsq7zsIyqkp0jrd6jXnWezPJCyVxqFsoi5GEM5CxjQV1zoeKIF_wCueZEXnFjzNrKpBkv_hHjEjmG9WaN8DJp9R-vV1fAa-7nV53pfwLU6Y09
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%83%8F%E7%B4%A0%E5%AF%B9%E6%AF%94%E5%AD%A6%E4%B9%A0%E7%9A%84%E5%9B%BE%E5%83%8F%E8%B6%85%E5%88%86%E8%BE%A8%E7%8E%87%E7%AE%97%E6%B3%95&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E5%91%A8%E7%99%BB%E6%96%87&rft.au=%E5%88%98%E5%AD%90%E6%B6%B5&rft.au=%E5%88%98%E7%8E%89%E9%93%A0&rft.date=2024&rft.pub=%E5%8D%8E%E5%8C%97%E7%94%B5%E5%8A%9B%E5%A4%A7%E5%AD%A6%E6%8E%A7%E5%88%B6%E4%B8%8E%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2+%E5%8C%97%E4%BA%AC+102206&rft.issn=0254-4156&rft.volume=50&rft.issue=1&rft.spage=181&rft.epage=193&rft_id=info:doi/10.16383%2Fj.aas.c230395&rft.externalDocID=zdhxb202401014
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg