基于像素对比学习的图像超分辨率算法
目前,深度卷积神经网络(Convolutional neural network,CNN)已主导了单图像超分辨率(Single image super-resolution,SISR)技术的研究,并取得了很大进展.但是,SISR仍是一个开放性问题,重建的超分辨率(Super-resolution,SR)图像往往会出现模糊、纹理细节丢失和失真等问题.提出一个新的逐像素对比损失,在一个局部区域中,使SR图像的像素尽可能靠近对应的原高分辨率(High-resolution,HR)图像的像素,并远离局部区域中的其他像素,可改进SR图像的保真度和视觉质量.提出一个组合对比损失的渐进残差特征融合网络(Pr...
Saved in:
Published in | 自动化学报 Vol. 50; no. 1; pp. 181 - 193 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | Chinese |
Published |
华北电力大学控制与计算机工程学院 北京 102206
2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0254-4156 |
DOI | 10.16383/j.aas.c230395 |
Cover
Abstract | 目前,深度卷积神经网络(Convolutional neural network,CNN)已主导了单图像超分辨率(Single image super-resolution,SISR)技术的研究,并取得了很大进展.但是,SISR仍是一个开放性问题,重建的超分辨率(Super-resolution,SR)图像往往会出现模糊、纹理细节丢失和失真等问题.提出一个新的逐像素对比损失,在一个局部区域中,使SR图像的像素尽可能靠近对应的原高分辨率(High-resolution,HR)图像的像素,并远离局部区域中的其他像素,可改进SR图像的保真度和视觉质量.提出一个组合对比损失的渐进残差特征融合网络(Progressive residual feature fusion network,PRFFN).主要贡献有:1)提出一个通用的基于对比学习的逐像素损失函数,能够改进SR图像的保真度和视觉质量;2)提出一个轻量的多尺度残差通道注意力块(Multi-scale residual channel attention block,MRCAB),可以更好地提取和利用多尺度特征信息;3)提出一个空间注意力融合块(Spatial attention fuse block,SAFB),可以更好地利用邻近空间特征的相关性.实验结果表明,PRFFN显著优于其他代表性方法. |
---|---|
AbstractList | 目前,深度卷积神经网络(Convolutional neural network,CNN)已主导了单图像超分辨率(Single image super-resolution,SISR)技术的研究,并取得了很大进展.但是,SISR仍是一个开放性问题,重建的超分辨率(Super-resolution,SR)图像往往会出现模糊、纹理细节丢失和失真等问题.提出一个新的逐像素对比损失,在一个局部区域中,使SR图像的像素尽可能靠近对应的原高分辨率(High-resolution,HR)图像的像素,并远离局部区域中的其他像素,可改进SR图像的保真度和视觉质量.提出一个组合对比损失的渐进残差特征融合网络(Progressive residual feature fusion network,PRFFN).主要贡献有:1)提出一个通用的基于对比学习的逐像素损失函数,能够改进SR图像的保真度和视觉质量;2)提出一个轻量的多尺度残差通道注意力块(Multi-scale residual channel attention block,MRCAB),可以更好地提取和利用多尺度特征信息;3)提出一个空间注意力融合块(Spatial attention fuse block,SAFB),可以更好地利用邻近空间特征的相关性.实验结果表明,PRFFN显著优于其他代表性方法. |
Abstract_FL | Deep convolutional neural network(CNN)has achieved great success in single image super-resolution(SISR).However,SISR is still an open issue,and reconstructed super-resolution(SR)images often suffer from blur-ring,loss of texture details and distortion.In this paper,a new pixel-wise contrastive loss is proposed to improve the fidelity and visual quality of SR images by making the pixels of SR images as close as possible to the corres-ponding pixels of the original high-resolution(HR)images and away from the other pixels in the local region.We also propose a progressive residual feature fusion network(PRFFN)with combined contrastive loss,and the main contributions include:1)A general pixel-wise loss function based on contrastive learning is proposed,which can im-prove the fidelity and visual quality of SR images;2)A lightweight multi-scale residual channel attention block(MRCAB)is proposed,which can better extract and utilize multi-scale feature information;3)A spatial attention fusion block(SAFB)is proposed,which can better utilize the correlation of neighboring spatial features.The experi-mental results demonstrate that PRFFN significantly outperforms other representative methods. |
Author | 刘玉铠 刘子涵 周登文 |
AuthorAffiliation | 华北电力大学控制与计算机工程学院 北京 102206 |
AuthorAffiliation_xml | – name: 华北电力大学控制与计算机工程学院 北京 102206 |
Author_FL | LIU Yu-Kai LIU Zi-Han ZHOU Deng-Wen |
Author_FL_xml | – sequence: 1 fullname: ZHOU Deng-Wen – sequence: 2 fullname: LIU Zi-Han – sequence: 3 fullname: LIU Yu-Kai |
Author_xml | – sequence: 1 fullname: 周登文 – sequence: 2 fullname: 刘子涵 – sequence: 3 fullname: 刘玉铠 |
BookMark | eNotjbtKA0EUQKeIYIxp_QS7Xe-dmd3slBJ8QcBG6zBPNcgGHESx9VnFJiJoYSqx0RSKkBT5mkw2n-GKVgdOcc4SqeTd3BKyghBjyjK21oml9LGmDJhIKqQKNOERxyRdJHXvjxQAIlCBWCUsvIyn4164vC--BmE4mg374f11OhoUT1fheVL6-fd1uLuZT96K3m3x8Tj7fFgmC04ee1v_Z43sb27sNbej1u7WTnO9FXkE5FHW4EI4zYR2gmqjVaqVNcaZlDNJgaM1SjJlJU8c6AaFDF1pU-cUGmoNq5HVv-6ZzJ3MD9qd7ulJXh7bF-bwXFGgHH5P7Ac6ZVsQ |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.16383/j.aas.c230395 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitle_FL | Pixel-wise Contrastive Learning for Single Image Super-resolution |
EndPage | 193 |
ExternalDocumentID | zdhxb202401014 |
GroupedDBID | --K -0Y .~1 0R~ 1B1 1~. 1~5 2B. 4.4 457 4A8 4G. 5GY 5VS 5XA 5XJ 7-5 71M 8P~ 92H 92I 93N AAIKJ AALRI AAQFI AAXUO ABJNI ABWVN ACGFS ACRPL ADEZE ADNMO ADTZH AECPX AEKER AFTJW AGHFR AGYEJ AITUG ALMA_UNASSIGNED_HOLDINGS BLXMC CCEZO CS3 CUBFJ CW9 EBS EJD EO8 EO9 EP2 EP3 FDB FEDTE FNPLU GBLVA HVGLF HZ~ IHE J1W JJJVA M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PSX Q38 ROL RPZ SDF SDG SES TCJ TGT U1G U5S |
ID | FETCH-LOGICAL-s1014-87499fc39cf92cdcb6cbeddfd643a2041edba3bea45f0c72081f0416ffb1d2ed3 |
ISSN | 0254-4156 |
IngestDate | Thu May 29 04:10:31 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | convolutional neural network(CNN) 注意力机制 contrastive learning 卷积神经网络 Image super-resolution 对比学习 图像超分辨率 attention mechan-ism |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1014-87499fc39cf92cdcb6cbeddfd643a2041edba3bea45f0c72081f0416ffb1d2ed3 |
PageCount | 13 |
ParticipantIDs | wanfang_journals_zdhxb202401014 |
PublicationCentury | 2000 |
PublicationDate | 2024 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024 |
PublicationDecade | 2020 |
PublicationTitle | 自动化学报 |
PublicationTitle_FL | Acta Automatica Sinica |
PublicationYear | 2024 |
Publisher | 华北电力大学控制与计算机工程学院 北京 102206 |
Publisher_xml | – name: 华北电力大学控制与计算机工程学院 北京 102206 |
SSID | ssib001102911 ssib006576350 ssib051375349 ssib007293330 ssj0059721 ssib007290157 ssib023646446 ssib005904210 |
Score | 2.4728804 |
Snippet | 目前,深度卷积神经网络(Convolutional neural network,CNN)已主导了单图像超分辨率(Single image... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 181 |
Title | 基于像素对比学习的图像超分辨率算法 |
URI | https://d.wanfangdata.com.cn/periodical/zdhxb202401014 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR27bhQx0EouDRSIp3iTAlfRwe76sXbpvewRIaBKUCqifZLqkMhFQtfyrEIDQoKCVIgGUoCQkiJfk8vlM5jxOpxPROIhnSzv7Iw9j1t7xrseE3I9qAJVCV62S5g92rwGHy6rGYQqcVawvMwirnDv8N17cmGJ314Wy1PTD7yvltb7-Y1icOS-kv-xKsDArrhL9h8s-6tRAEAd7AslWBjKv7IxTQXVXZoYmnIsVYoQxajq0jSmCacmQIgBHE1TiRXNLWSeGmmptMWJqQZye0snNPHbUTSRVAkLUVRJC0mpUUgFPaoYKyalOsYuEkab8ywPXV7EBxxjbAvGEkKlQ7X0OJH2lji0v2UkdJ1oTZMEUYBiPG86hrRyrejAdg8_cQRKwyooQVPNQGR_tSMar3NaivlDRXasTDHqLBGOfVAP9geqjSfZTx1EWYWhapVtR6FuTDihJN2xRhM0AaCwtwA58RrUKLWJ5jw-rIlNZw6j50B6IzhE322MkP3ppsmzO_FYNXNH2Jxd49yQsDk48rcZDsZLZqe4LIO_LgSQzBl1Mmv4oFx9kqMC7WHM02QmiqWMWmTmVnLnvhk7zMCy9kZ4oWEQ9xxCKTBh4fg6xtfu3ntyuGZsHIDiaQTSW2AQIYNwGAP8xjcSmCvKrno6xbg0qijUzQmR7B66Xp31Hnru3uJJcsLFabOmeehOkanB6mly3MveeYaw4cedvZ2N4dPXo--bw63t_a03wy-f9rY3R--fDT_sAvzgx_PhqxcHu59HGy9HX9_tf3t7lix108XOQtudQdJeQ8WBs8C1rgumi1pHRVnkssirsqxL8OSzKOBhVeYZy6uMizoo4gg87Bqgsq7zsIyqkp0jrd6jXnWezPJCyVxqFsoi5GEM5CxjQV1zoeKIF_wCueZEXnFjzNrKpBkv_hHjEjmG9WaN8DJp9R-vV1fAa-7nV53pfwLU6Y09 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%83%8F%E7%B4%A0%E5%AF%B9%E6%AF%94%E5%AD%A6%E4%B9%A0%E7%9A%84%E5%9B%BE%E5%83%8F%E8%B6%85%E5%88%86%E8%BE%A8%E7%8E%87%E7%AE%97%E6%B3%95&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E5%91%A8%E7%99%BB%E6%96%87&rft.au=%E5%88%98%E5%AD%90%E6%B6%B5&rft.au=%E5%88%98%E7%8E%89%E9%93%A0&rft.date=2024&rft.pub=%E5%8D%8E%E5%8C%97%E7%94%B5%E5%8A%9B%E5%A4%A7%E5%AD%A6%E6%8E%A7%E5%88%B6%E4%B8%8E%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2+%E5%8C%97%E4%BA%AC+102206&rft.issn=0254-4156&rft.volume=50&rft.issue=1&rft.spage=181&rft.epage=193&rft_id=info:doi/10.16383%2Fj.aas.c230395&rft.externalDocID=zdhxb202401014 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg |