基于TCA-CNN-LSTM的短期负荷预测研究

TM715; 为有效地挖掘历史数据信息,提高短期负荷预测准确性,文章针对电力负荷时序性和非线性的特点,在原有一维卷积神经网络(Convolutional Neural Network,CNN)-长短期记忆网络(Long Short Term Memory,LSTM)模型的基础上,分别在CNN和LSTM侧嵌入通道注意力机制(Channel Attention,CA)和时序注意力机制(Temporal Atten-tion,TA),构建CA-CNN和TA-LSTM模块,结合CA-CNN和TA-LSTM模块构建TCA-CNN-LSTM的层级注意力机制短期负荷预测模型.同时,为提高训练数据的质量并加快...

Full description

Saved in:
Bibliographic Details
Published in电测与仪表 Vol. 60; no. 8; pp. 73 - 80
Main Authors 林涵, 郝正航, 郭家鹏, 吴育栋
Format Journal Article
LanguageChinese
Published 贵州大学电气工程学院,贵阳550025 15.08.2023
Subjects
Online AccessGet full text
ISSN1001-1390
DOI10.19753/j.issn1001-1390.2023.08.013

Cover

Abstract TM715; 为有效地挖掘历史数据信息,提高短期负荷预测准确性,文章针对电力负荷时序性和非线性的特点,在原有一维卷积神经网络(Convolutional Neural Network,CNN)-长短期记忆网络(Long Short Term Memory,LSTM)模型的基础上,分别在CNN和LSTM侧嵌入通道注意力机制(Channel Attention,CA)和时序注意力机制(Temporal Atten-tion,TA),构建CA-CNN和TA-LSTM模块,结合CA-CNN和TA-LSTM模块构建TCA-CNN-LSTM的层级注意力机制短期负荷预测模型.同时,为提高训练数据的质量并加快模型训练速度,运用K-means和决策树模型选取相似日数据,构建基于相似日数据的向量特征时序图,最后将时序图输入TCA-CNN-LSTM负荷预测模型完成预测.以澳大利亚某地真实数据集和2016电工杯数学建模竞赛电力负荷数据为算例,分别应用TCA-CNN-LSTM模型与支持向量机、多层感知机(Multilayer Perceptron,MLP)、LSTM、CNN-LSTM 和 CNN-Attention-LSTM 模型的预测结果进行对比,实验结果表明,所提方法具有更高的预测精度.
AbstractList TM715; 为有效地挖掘历史数据信息,提高短期负荷预测准确性,文章针对电力负荷时序性和非线性的特点,在原有一维卷积神经网络(Convolutional Neural Network,CNN)-长短期记忆网络(Long Short Term Memory,LSTM)模型的基础上,分别在CNN和LSTM侧嵌入通道注意力机制(Channel Attention,CA)和时序注意力机制(Temporal Atten-tion,TA),构建CA-CNN和TA-LSTM模块,结合CA-CNN和TA-LSTM模块构建TCA-CNN-LSTM的层级注意力机制短期负荷预测模型.同时,为提高训练数据的质量并加快模型训练速度,运用K-means和决策树模型选取相似日数据,构建基于相似日数据的向量特征时序图,最后将时序图输入TCA-CNN-LSTM负荷预测模型完成预测.以澳大利亚某地真实数据集和2016电工杯数学建模竞赛电力负荷数据为算例,分别应用TCA-CNN-LSTM模型与支持向量机、多层感知机(Multilayer Perceptron,MLP)、LSTM、CNN-LSTM 和 CNN-Attention-LSTM 模型的预测结果进行对比,实验结果表明,所提方法具有更高的预测精度.
Author 吴育栋
郝正航
林涵
郭家鹏
AuthorAffiliation 贵州大学电气工程学院,贵阳550025
AuthorAffiliation_xml – name: 贵州大学电气工程学院,贵阳550025
Author_FL Hao Zhenghang
Lin Han
Wu Yudong
Guo Jiapeng
Author_FL_xml – sequence: 1
  fullname: Lin Han
– sequence: 2
  fullname: Hao Zhenghang
– sequence: 3
  fullname: Guo Jiapeng
– sequence: 4
  fullname: Wu Yudong
Author_xml – sequence: 1
  fullname: 林涵
– sequence: 2
  fullname: 郝正航
– sequence: 3
  fullname: 郭家鹏
– sequence: 4
  fullname: 吴育栋
BookMark eNo9z71KA0EUBeApIhhj3kLsZr33zk5mpgyLf7DGwrUOs9ldSZAJOIikTydaWYmwwc7CLkbI82g2voUritWBU5yPs8UabuxyxnYQAjRKir1RMPTeIQByFAYCAhIB6ABQNFjzv99kbe-HKUgUKuwANRn_LJcfy_sk6vKo1-PxWXJSPU6r8nX1VK7n5fru_et5unq7rWYP1ctim20U9tLn7b9ssfOD_SQ64vHp4XHUjbnHWuRZWghLSmuyoSjSDHLQSNagzQqSmZZoQqusNqQoNwYlEJrOILUgpaFciRbb_d29sa6w7qI_Gl9fuVrsZ4PJJP15B7qWxDd-a1J3
ClassificationCodes TM715
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.19753/j.issn1001-1390.2023.08.013
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL Research on short-term load forecasting based on TCA-CNN-LSTM
EndPage 80
ExternalDocumentID dcyyb202308013
GrantInformation_xml – fundername: (国家自然科学基金); 贵州省科技计划项目
GroupedDBID -03
2B.
4A8
5XA
5XD
92H
92I
93N
ABJNI
ACGFS
ADMLS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CEKLB
CW9
GROUPED_DOAJ
PSX
TCJ
TGT
U1G
U5M
ID FETCH-LOGICAL-s1013-dbf3a27882a43fbd0e0812a91adf25d85194a7a89272e991502196cba05592e73
ISSN 1001-1390
IngestDate Thu May 29 03:55:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords 长短期记忆网络
注意力机制
short-term power load
long short-term memory network
卷积神经网络
attention mechanism
convolutional neural network
短期电力负荷
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1013-dbf3a27882a43fbd0e0812a91adf25d85194a7a89272e991502196cba05592e73
PageCount 8
ParticipantIDs wanfang_journals_dcyyb202308013
PublicationCentury 2000
PublicationDate 2023-08-15
PublicationDateYYYYMMDD 2023-08-15
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-15
  day: 15
PublicationDecade 2020
PublicationTitle 电测与仪表
PublicationTitle_FL Electrical Measurement & Instrumentation
PublicationYear 2023
Publisher 贵州大学电气工程学院,贵阳550025
Publisher_xml – name: 贵州大学电气工程学院,贵阳550025
SSID ssib051374602
ssj0039791
ssib001129792
Score 2.3773863
Snippet TM715; 为有效地挖掘历史数据信息,提高短期负荷预测准确性,文章针对电力负荷时序性和非线性的特点,在原有一维卷积神经网络(Convolutional Neural Network,CNN)-长短期记忆...
SourceID wanfang
SourceType Aggregation Database
StartPage 73
Title 基于TCA-CNN-LSTM的短期负荷预测研究
URI https://d.wanfangdata.com.cn/periodical/dcyyb202308013
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1001-1390
  databaseCode: DOA
  dateStart: 20140101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0039791
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR27btRAcBWChKBAPMWbFJkKOdjrXa-3XF98ihC5houULlq_SHVI5FIkdToEFRVCOkRHQcdDyvdALvwFM3s-20ERr8aa25uZnZ3Z9cys98HYMsaomP0r5WWK55igKB-HlCi9qghzEWt0SAXtHV4fRGsb4tGm3Fw486Czaml3nK3k-6fuK_kfq2IZ2pV2yf6DZRumWIAw2hefaGF8_pWNIZWg-5AYSAU943TYM15vMPAePxmuQ6pAY6FwQB_MKqQR6B7BaQyJqIF4FRIFqQbDHXIEiYQ4ISrjg3bkRkMSdQNZx1MQZouPP5Fb6oAEjCHmJgDTrJZ19aeglSMiuvYfDXEI2omIgprQSYb05hcUaoUEkxI9liRY2G9RUB8-tYyIOSTcsfNRuu7sBg9puna2v9P1x1od1BhJukAZqQ4BRjkA5YlONnimF4dspFNQ7FTQIGvQTqG812GOhQhj7EUxYMcd0IIzjJH9rr-Y3X9Qj4u48_Kf3ckyDyP8Ux0U7WN2Hor4N-xXqOnuKNkgbB1zs1yyyPf2MkLB8J5uaD7L0YX5nfkDF_ti5KbaT-QyCJWI_OYsNfp-62Yf5nWeY8tzgR7-Rhy3mW1U2dHTTtw1vMQu1gnTkpn1_stsYX_7CrvQOUbzKvO-Tw6_Hb7q9v3pm4Pp5OPR28nxp8nxy68_3h8cfX4xffd6-uHLNbbRx3Gy5tXXgHg7Ad09UmRVaLnCVNCKsMoKv8Qwllsd2KLissCUQQurLL5YFC8x3ZEYtuooz6yP2TIvVXidLY6ejcobbEkiI80LyyPJRZYpa3UuNXLmcVXwXN9k9-vGbtXDfGfrpPJv_RHjNjvfduQ7bHH8fLe8i4HrOLvnDPYTpGxonA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8ETCA-CNN-LSTM%E7%9A%84%E7%9F%AD%E6%9C%9F%E8%B4%9F%E8%8D%B7%E9%A2%84%E6%B5%8B%E7%A0%94%E7%A9%B6&rft.jtitle=%E7%94%B5%E6%B5%8B%E4%B8%8E%E4%BB%AA%E8%A1%A8&rft.au=%E6%9E%97%E6%B6%B5&rft.au=%E9%83%9D%E6%AD%A3%E8%88%AA&rft.au=%E9%83%AD%E5%AE%B6%E9%B9%8F&rft.au=%E5%90%B4%E8%82%B2%E6%A0%8B&rft.date=2023-08-15&rft.pub=%E8%B4%B5%E5%B7%9E%E5%A4%A7%E5%AD%A6%E7%94%B5%E6%B0%94%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E8%B4%B5%E9%98%B3550025&rft.issn=1001-1390&rft.volume=60&rft.issue=8&rft.spage=73&rft.epage=80&rft_id=info:doi/10.19753%2Fj.issn1001-1390.2023.08.013&rft.externalDocID=dcyyb202308013
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdcyyb%2Fdcyyb.jpg