基于TCA-CNN-LSTM的短期负荷预测研究
TM715; 为有效地挖掘历史数据信息,提高短期负荷预测准确性,文章针对电力负荷时序性和非线性的特点,在原有一维卷积神经网络(Convolutional Neural Network,CNN)-长短期记忆网络(Long Short Term Memory,LSTM)模型的基础上,分别在CNN和LSTM侧嵌入通道注意力机制(Channel Attention,CA)和时序注意力机制(Temporal Atten-tion,TA),构建CA-CNN和TA-LSTM模块,结合CA-CNN和TA-LSTM模块构建TCA-CNN-LSTM的层级注意力机制短期负荷预测模型.同时,为提高训练数据的质量并加快...
        Saved in:
      
    
          | Published in | 电测与仪表 Vol. 60; no. 8; pp. 73 - 80 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | Chinese | 
| Published | 
            贵州大学电气工程学院,贵阳550025
    
        15.08.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1001-1390 | 
| DOI | 10.19753/j.issn1001-1390.2023.08.013 | 
Cover
| Abstract | TM715; 为有效地挖掘历史数据信息,提高短期负荷预测准确性,文章针对电力负荷时序性和非线性的特点,在原有一维卷积神经网络(Convolutional Neural Network,CNN)-长短期记忆网络(Long Short Term Memory,LSTM)模型的基础上,分别在CNN和LSTM侧嵌入通道注意力机制(Channel Attention,CA)和时序注意力机制(Temporal Atten-tion,TA),构建CA-CNN和TA-LSTM模块,结合CA-CNN和TA-LSTM模块构建TCA-CNN-LSTM的层级注意力机制短期负荷预测模型.同时,为提高训练数据的质量并加快模型训练速度,运用K-means和决策树模型选取相似日数据,构建基于相似日数据的向量特征时序图,最后将时序图输入TCA-CNN-LSTM负荷预测模型完成预测.以澳大利亚某地真实数据集和2016电工杯数学建模竞赛电力负荷数据为算例,分别应用TCA-CNN-LSTM模型与支持向量机、多层感知机(Multilayer Perceptron,MLP)、LSTM、CNN-LSTM 和 CNN-Attention-LSTM 模型的预测结果进行对比,实验结果表明,所提方法具有更高的预测精度. | 
    
|---|---|
| AbstractList | TM715; 为有效地挖掘历史数据信息,提高短期负荷预测准确性,文章针对电力负荷时序性和非线性的特点,在原有一维卷积神经网络(Convolutional Neural Network,CNN)-长短期记忆网络(Long Short Term Memory,LSTM)模型的基础上,分别在CNN和LSTM侧嵌入通道注意力机制(Channel Attention,CA)和时序注意力机制(Temporal Atten-tion,TA),构建CA-CNN和TA-LSTM模块,结合CA-CNN和TA-LSTM模块构建TCA-CNN-LSTM的层级注意力机制短期负荷预测模型.同时,为提高训练数据的质量并加快模型训练速度,运用K-means和决策树模型选取相似日数据,构建基于相似日数据的向量特征时序图,最后将时序图输入TCA-CNN-LSTM负荷预测模型完成预测.以澳大利亚某地真实数据集和2016电工杯数学建模竞赛电力负荷数据为算例,分别应用TCA-CNN-LSTM模型与支持向量机、多层感知机(Multilayer Perceptron,MLP)、LSTM、CNN-LSTM 和 CNN-Attention-LSTM 模型的预测结果进行对比,实验结果表明,所提方法具有更高的预测精度. | 
    
| Author | 吴育栋 郝正航 林涵 郭家鹏  | 
    
| AuthorAffiliation | 贵州大学电气工程学院,贵阳550025 | 
    
| AuthorAffiliation_xml | – name: 贵州大学电气工程学院,贵阳550025 | 
    
| Author_FL | Hao Zhenghang Lin Han Wu Yudong Guo Jiapeng  | 
    
| Author_FL_xml | – sequence: 1 fullname: Lin Han – sequence: 2 fullname: Hao Zhenghang – sequence: 3 fullname: Guo Jiapeng – sequence: 4 fullname: Wu Yudong  | 
    
| Author_xml | – sequence: 1 fullname: 林涵 – sequence: 2 fullname: 郝正航 – sequence: 3 fullname: 郭家鹏 – sequence: 4 fullname: 吴育栋  | 
    
| BookMark | eNo9z71KA0EUBeApIhhj3kLsZr33zk5mpgyLf7DGwrUOs9ldSZAJOIikTydaWYmwwc7CLkbI82g2voUritWBU5yPs8UabuxyxnYQAjRKir1RMPTeIQByFAYCAhIB6ABQNFjzv99kbe-HKUgUKuwANRn_LJcfy_sk6vKo1-PxWXJSPU6r8nX1VK7n5fru_et5unq7rWYP1ctim20U9tLn7b9ssfOD_SQ64vHp4XHUjbnHWuRZWghLSmuyoSjSDHLQSNagzQqSmZZoQqusNqQoNwYlEJrOILUgpaFciRbb_d29sa6w7qI_Gl9fuVrsZ4PJJP15B7qWxDd-a1J3 | 
    
| ClassificationCodes | TM715 | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. | 
    
| DBID | 2B. 4A8 92I 93N PSX TCJ  | 
    
| DOI | 10.19753/j.issn1001-1390.2023.08.013 | 
    
| DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ)  | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| DocumentTitle_FL | Research on short-term load forecasting based on TCA-CNN-LSTM | 
    
| EndPage | 80 | 
    
| ExternalDocumentID | dcyyb202308013 | 
    
| GrantInformation_xml | – fundername: (国家自然科学基金); 贵州省科技计划项目 | 
    
| GroupedDBID | -03 2B. 4A8 5XA 5XD 92H 92I 93N ABJNI ACGFS ADMLS ALMA_UNASSIGNED_HOLDINGS CCEZO CEKLB CW9 GROUPED_DOAJ PSX TCJ TGT U1G U5M  | 
    
| ID | FETCH-LOGICAL-s1013-dbf3a27882a43fbd0e0812a91adf25d85194a7a89272e991502196cba05592e73 | 
    
| ISSN | 1001-1390 | 
    
| IngestDate | Thu May 29 03:55:44 EDT 2025 | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 8 | 
    
| Keywords | 长短期记忆网络 注意力机制 short-term power load long short-term memory network 卷积神经网络 attention mechanism convolutional neural network 短期电力负荷  | 
    
| Language | Chinese | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-s1013-dbf3a27882a43fbd0e0812a91adf25d85194a7a89272e991502196cba05592e73 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | wanfang_journals_dcyyb202308013 | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-08-15 | 
    
| PublicationDateYYYYMMDD | 2023-08-15 | 
    
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-15 day: 15  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | 电测与仪表 | 
    
| PublicationTitle_FL | Electrical Measurement & Instrumentation | 
    
| PublicationYear | 2023 | 
    
| Publisher | 贵州大学电气工程学院,贵阳550025 | 
    
| Publisher_xml | – name: 贵州大学电气工程学院,贵阳550025 | 
    
| SSID | ssib051374602 ssj0039791 ssib001129792  | 
    
| Score | 2.3773863 | 
    
| Snippet | TM715; 为有效地挖掘历史数据信息,提高短期负荷预测准确性,文章针对电力负荷时序性和非线性的特点,在原有一维卷积神经网络(Convolutional Neural Network,CNN)-长短期记忆... | 
    
| SourceID | wanfang | 
    
| SourceType | Aggregation Database | 
    
| StartPage | 73 | 
    
| Title | 基于TCA-CNN-LSTM的短期负荷预测研究 | 
    
| URI | https://d.wanfangdata.com.cn/periodical/dcyyb202308013 | 
    
| Volume | 60 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1001-1390 databaseCode: DOA dateStart: 20140101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0039791 providerName: Directory of Open Access Journals  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR27btRAcBWChKBAPMWbFJkKOdjrXa-3XF98ihC5houULlq_SHVI5FIkdToEFRVCOkRHQcdDyvdALvwFM3s-20ERr8aa25uZnZ3Z9cys98HYMsaomP0r5WWK55igKB-HlCi9qghzEWt0SAXtHV4fRGsb4tGm3Fw486Czaml3nK3k-6fuK_kfq2IZ2pV2yf6DZRumWIAw2hefaGF8_pWNIZWg-5AYSAU943TYM15vMPAePxmuQ6pAY6FwQB_MKqQR6B7BaQyJqIF4FRIFqQbDHXIEiYQ4ISrjg3bkRkMSdQNZx1MQZouPP5Fb6oAEjCHmJgDTrJZ19aeglSMiuvYfDXEI2omIgprQSYb05hcUaoUEkxI9liRY2G9RUB8-tYyIOSTcsfNRuu7sBg9puna2v9P1x1od1BhJukAZqQ4BRjkA5YlONnimF4dspFNQ7FTQIGvQTqG812GOhQhj7EUxYMcd0IIzjJH9rr-Y3X9Qj4u48_Kf3ckyDyP8Ux0U7WN2Hor4N-xXqOnuKNkgbB1zs1yyyPf2MkLB8J5uaD7L0YX5nfkDF_ti5KbaT-QyCJWI_OYsNfp-62Yf5nWeY8tzgR7-Rhy3mW1U2dHTTtw1vMQu1gnTkpn1_stsYX_7CrvQOUbzKvO-Tw6_Hb7q9v3pm4Pp5OPR28nxp8nxy68_3h8cfX4xffd6-uHLNbbRx3Gy5tXXgHg7Ad09UmRVaLnCVNCKsMoKv8Qwllsd2KLissCUQQurLL5YFC8x3ZEYtuooz6yP2TIvVXidLY6ejcobbEkiI80LyyPJRZYpa3UuNXLmcVXwXN9k9-vGbtXDfGfrpPJv_RHjNjvfduQ7bHH8fLe8i4HrOLvnDPYTpGxonA | 
    
| linkProvider | Directory of Open Access Journals | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8ETCA-CNN-LSTM%E7%9A%84%E7%9F%AD%E6%9C%9F%E8%B4%9F%E8%8D%B7%E9%A2%84%E6%B5%8B%E7%A0%94%E7%A9%B6&rft.jtitle=%E7%94%B5%E6%B5%8B%E4%B8%8E%E4%BB%AA%E8%A1%A8&rft.au=%E6%9E%97%E6%B6%B5&rft.au=%E9%83%9D%E6%AD%A3%E8%88%AA&rft.au=%E9%83%AD%E5%AE%B6%E9%B9%8F&rft.au=%E5%90%B4%E8%82%B2%E6%A0%8B&rft.date=2023-08-15&rft.pub=%E8%B4%B5%E5%B7%9E%E5%A4%A7%E5%AD%A6%E7%94%B5%E6%B0%94%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E8%B4%B5%E9%98%B3550025&rft.issn=1001-1390&rft.volume=60&rft.issue=8&rft.spage=73&rft.epage=80&rft_id=info:doi/10.19753%2Fj.issn1001-1390.2023.08.013&rft.externalDocID=dcyyb202308013 | 
    
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdcyyb%2Fdcyyb.jpg |