多尺度视觉语义增强的多模态命名实体识别方法
为解决多模态命名实体识别(Multimodal named entity recognition,MNER)方法研究中存在的图像特征语义缺失和多模态表示语义约束较弱等问题,提出多尺度视觉语义增强的多模态命名实体识别方法(Multi-scale visual semant-ic enhancement for multimodal named entity recognition method,MSVSE).该方法提取多种视觉特征用于补全图像语义,挖掘文本特征与多种视觉特征间的语义交互关系,生成多尺度视觉语义特征并进行融合,得到多尺度视觉语义增强的多模态文本表示;使用视觉实体分类器对多尺度视觉语...
Saved in:
Published in | 自动化学报 Vol. 50; no. 6; pp. 1234 - 1245 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Chinese |
Published |
北方民族大学计算机科学与工程学院 银川 750021
01.06.2024
北方民族大学图像图形智能处理国家民委重点实验室 银川 750021%北方民族大学计算机科学与工程学院 银川 750021 |
Subjects | |
Online Access | Get full text |
ISSN | 0254-4156 |
DOI | 10.16383/j.aas.c230573 |
Cover
Abstract | 为解决多模态命名实体识别(Multimodal named entity recognition,MNER)方法研究中存在的图像特征语义缺失和多模态表示语义约束较弱等问题,提出多尺度视觉语义增强的多模态命名实体识别方法(Multi-scale visual semant-ic enhancement for multimodal named entity recognition method,MSVSE).该方法提取多种视觉特征用于补全图像语义,挖掘文本特征与多种视觉特征间的语义交互关系,生成多尺度视觉语义特征并进行融合,得到多尺度视觉语义增强的多模态文本表示;使用视觉实体分类器对多尺度视觉语义特征解码,实现视觉特征的语义一致性约束;调用多任务标签解码器挖掘多模态文本表示和文本特征的细粒度语义,通过联合解码解决语义偏差问题,从而进一步提高命名实体识别准确度.为验证该方法的有效性,在Twitter-2015和Twitter-2017数据集上进行实验,并与其他10种方法进行对比,该方法的平均F1值得到提升. |
---|---|
AbstractList | 为解决多模态命名实体识别(Multimodal named entity recognition,MNER)方法研究中存在的图像特征语义缺失和多模态表示语义约束较弱等问题,提出多尺度视觉语义增强的多模态命名实体识别方法(Multi-scale visual semant-ic enhancement for multimodal named entity recognition method,MSVSE).该方法提取多种视觉特征用于补全图像语义,挖掘文本特征与多种视觉特征间的语义交互关系,生成多尺度视觉语义特征并进行融合,得到多尺度视觉语义增强的多模态文本表示;使用视觉实体分类器对多尺度视觉语义特征解码,实现视觉特征的语义一致性约束;调用多任务标签解码器挖掘多模态文本表示和文本特征的细粒度语义,通过联合解码解决语义偏差问题,从而进一步提高命名实体识别准确度.为验证该方法的有效性,在Twitter-2015和Twitter-2017数据集上进行实验,并与其他10种方法进行对比,该方法的平均F1值得到提升. |
Abstract_FL | To address the issues of semantic loss in image features and weak semantic constraints in multimodal representations encountered in the research of multimodal named entity recognition(MNER)methods,multi-scale visual semantic enhancement for multimodal named entity recognition method(MSVSE)is proposed.After supple-menting image semantics by extracting multiple visual features,the semantic interaction and feature fusion between text features and various visual features are explored through a multimodal feature fusion module.This process out-puts multi-scale visual semantic-enhanced multimodal text representations.The visual entity classifier is used to de-code multi-scale visual semantic features to learn the semantic consistency between various visual features.The multi-task decoder is invoked to mine the fine-grained semantic representation in multimodal text repre-sentation and text features,and carry out joint decoding to solve the semantic bias problem,thereby further improving the accuracy of named entity recognition.To verify the effectiveness of the method,experiments were carried out on Twitter-2015 and Twitter-2017 respectively,and compared with other 10 methods.The average F1 values of the MSVSE on the two datasets have increased. |
Author | 王海荣 徐玺 陈芳萍 王彤 |
AuthorAffiliation | 北方民族大学计算机科学与工程学院 银川 750021;北方民族大学图像图形智能处理国家民委重点实验室 银川 750021%北方民族大学计算机科学与工程学院 银川 750021 |
AuthorAffiliation_xml | – name: 北方民族大学计算机科学与工程学院 银川 750021;北方民族大学图像图形智能处理国家民委重点实验室 银川 750021%北方民族大学计算机科学与工程学院 银川 750021 |
Author_FL | WANG Hai-Rong XU Xi CHEN Fang-Ping WANG Tong |
Author_FL_xml | – sequence: 1 fullname: WANG Hai-Rong – sequence: 2 fullname: XU Xi – sequence: 3 fullname: WANG Tong – sequence: 4 fullname: CHEN Fang-Ping |
Author_xml | – sequence: 1 fullname: 王海荣 – sequence: 2 fullname: 徐玺 – sequence: 3 fullname: 王彤 – sequence: 4 fullname: 陈芳萍 |
BookMark | eNotjb1Kw1AYQO9QwVq7-ghuid93f9KbSaT4B4UuOpebm1y1SAoGUZwUpNhBqIgdOhQUsYJoBacG-za9MY9hQKczHDhniZTiThwRsoLgosckW2u7SiWupgxEjZVIGajgDkfhLZJqkhwFAIhAfcQyWbfPQ_uZ2vQlH3fzcS-fvM-nPfs0st_pz_C6sNnrY3Z5Ze9mtn9rP0bz2X0-6dqbt2wwzb4elsmCUcdJVP1nhexvbe7Vd5xGc3u3vtFwEgRkjjIiYqA5SiVYiEZQqThXNYEhQ6klCqN1EHjGi6JAhRiC9A1yKUEbXxnDKmT1r3umYqPig1a7c3oSF8fWRXh4HlCgHLzixH4BjWRjVw |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.16383/j.aas.c230573 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitle_FL | Multi-scale Visual Semantic Enhancement for Multimodal Named Entity Recognition Method |
EndPage | 1245 |
ExternalDocumentID | zdhxb202406013 |
GroupedDBID | --K -0Y .~1 0R~ 1B1 1~. 1~5 2B. 4.4 457 4A8 4G. 5GY 5VS 5XA 5XJ 7-5 71M 8P~ 92H 92I 93N AAIKJ AALRI AAQFI AAXUO ABJNI ABWVN ACGFS ACRPL ADEZE ADNMO ADTZH AECPX AEKER AFTJW AGHFR AGYEJ AITUG ALMA_UNASSIGNED_HOLDINGS BLXMC CCEZO CS3 CUBFJ CW9 EBS EJD EO8 EO9 EP2 EP3 FDB FEDTE FNPLU GBLVA HVGLF HZ~ IHE J1W JJJVA M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PSX Q38 ROL RPZ SDF SDG SES TCJ TGT U1G U5S |
ID | FETCH-LOGICAL-s1013-af5e30c418a53d1f528a44a751d318c815fccbb6f6eebad1d089f14880cf9aff3 |
ISSN | 0254-4156 |
IngestDate | Thu May 29 04:10:31 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | 多模态命名实体识别 multi-task learning multimodal fusion Transformer Multimodal named entity recognition(MNER) 多模态融合 多任务学习 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1013-af5e30c418a53d1f528a44a751d318c815fccbb6f6eebad1d089f14880cf9aff3 |
PageCount | 12 |
ParticipantIDs | wanfang_journals_zdhxb202406013 |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | 自动化学报 |
PublicationTitle_FL | Acta Automatica Sinica |
PublicationYear | 2024 |
Publisher | 北方民族大学计算机科学与工程学院 银川 750021 北方民族大学图像图形智能处理国家民委重点实验室 银川 750021%北方民族大学计算机科学与工程学院 银川 750021 |
Publisher_xml | – name: 北方民族大学图像图形智能处理国家民委重点实验室 银川 750021%北方民族大学计算机科学与工程学院 银川 750021 – name: 北方民族大学计算机科学与工程学院 银川 750021 |
SSID | ssib001102911 ssib006576350 ssib051375349 ssib007293330 ssj0059721 ssib007290157 ssib023646446 ssib005904210 |
Score | 2.480551 |
Snippet | 为解决多模态命名实体识别(Multimodal named entity recognition,MNER)方法研究中存在的图像特征语义缺失和多模态表示语义约束较弱等问题,提出多尺度视觉语义增强的多模态命名实体识别方法(Multi-scale visual semant-ic enhancement for... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 1234 |
Title | 多尺度视觉语义增强的多模态命名实体识别方法 |
URI | https://d.wanfangdata.com.cn/periodical/zdhxb202406013 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahUxNLS3G12IT3zbhVmV6sxNMpOsJHPv1CLqqpXuyjzt6gq2BelKQYpdCIrookJBESuIVnDVYv-mc72f4TmZ3E4qBR-b4Uxyzsl55HGSmSSEXGXQ-BLmM_xTLYcJSiigzUl4MOmJLOG5ZLh3-M7dYHqW35oTcyOjb52_lpaX0mvZyqH7Sv7Hq5AGfsVdsv_g2X2mkAAw-Bee4GF4_pWPaSyo5lRpBCKPRjWgqQ5oLKkOqdwHlAGmqO7SmNNImRQgb1MVG6qOIQ-Rm-QO54BqIPQRkB4EnpilfBp1DQApBtCx4cMxXTFbFpYuqAQ4QnIVYLkARIzWd14Ow2LElyHVRn6psUQEOkiCzLtGo8BkiWEdQWFlTKXhHYEGoWEDuKxBgeQYpaxxm1UJh1igzJo3OYoqhVIjN43CAmAUdZdI2rz5lctU6qHE4UFVPTQWpkB5U9as4I9GK4m2Q_uGxog1-dAZgKl8BxnsK1Hu2KirhcGRVg2LY8TX7QkDMRoFFlt1JyBw8-qt4rbzh4n7JE6u3ZGqPqLXtkh32IHwgzshDMRs4tDhETpbZsbHJIF6D7NPUd8j89uR4yv5wqMUDYmH9bBRMtYOITBtkbGb0e17uom2IThVzvAgFIwATjQZCDztsHkP8Zu985Ed3hlrZq94lUHgrE4In8FcGlcH6sBK4EFTZsnUmsaewYpKXT-gktmA1yuT3n0nVpw5To7ZSd64rlvsCTKysnCSHHWO_jxFblQf1qtvO9XOx8Hm6mBzbbD1ZW97rXq_Uf3Y-bn-FHL7n971Hz-pXu5WL55XXzf2dl8NtlarZ5_7b7b731-fJrNT8UxnetJeZjK56OMNKkkpCuZl3JeJYLlfirZMOE9C4ecwrGbSF2WWpWlQBkWRJrmfe1KVPg6vWamSsmRnSKv3oFecJeNlGrKSyyIRieSZlyqehmWGx3RBh1xk3jlyxao_bzurxfmDLj3_R4wL5EjTki6S1tLD5eIShN9L6WVbDX4BFRKjsg |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%A4%9A%E5%B0%BA%E5%BA%A6%E8%A7%86%E8%A7%89%E8%AF%AD%E4%B9%89%E5%A2%9E%E5%BC%BA%E7%9A%84%E5%A4%9A%E6%A8%A1%E6%80%81%E5%91%BD%E5%90%8D%E5%AE%9E%E4%BD%93%E8%AF%86%E5%88%AB%E6%96%B9%E6%B3%95&rft.jtitle=%E8%87%AA%E5%8A%A8%E5%8C%96%E5%AD%A6%E6%8A%A5&rft.au=%E7%8E%8B%E6%B5%B7%E8%8D%A3&rft.au=%E5%BE%90%E7%8E%BA&rft.au=%E7%8E%8B%E5%BD%A4&rft.au=%E9%99%88%E8%8A%B3%E8%90%8D&rft.date=2024-06-01&rft.pub=%E5%8C%97%E6%96%B9%E6%B0%91%E6%97%8F%E5%A4%A7%E5%AD%A6%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E4%B8%8E%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2+%E9%93%B6%E5%B7%9D+750021&rft.issn=0254-4156&rft.volume=50&rft.issue=6&rft.spage=1234&rft.epage=1245&rft_id=info:doi/10.16383%2Fj.aas.c230573&rft.externalDocID=zdhxb202406013 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb%2Fzdhxb.jpg |