1型糖尿病患者QTc间期延长风险的预测模型的建立与验证

目的:探讨1型糖尿病(T1DM)患者QTc间期延长的影响因素,建立预测模型并进行验证。方法:本研究为横断面研究。选取2016年1月至2023年10月在甘肃省人民医院内分泌科住院的568例T1DM患者为研究对象。根据12导联常规心电图检查中QTc间期水平,将研究对象分为QTc间期正常组(423例)和QTc间期延长组(145例),并收集患者的一般资料和实验室检测指标,包括T1DM病程、尿白蛋白/肌酐比值(UACR)、糖化血红蛋白(HbA 1c)、高密度脂蛋白胆固醇(HDL-C)、血肌酐(Scr)、左心室射血分数(LVEF),以及是否合并糖尿病周围神经病变(DPN)等。应用LASSO回归优化筛选变量...

Full description

Saved in:
Bibliographic Details
Published in中华糖尿病杂志 Vol. 16; no. 8; pp. 849 - 856
Main Authors 黄昕, 刘小宁, 李佳昱, 王洁, 田利民
Format Journal Article
LanguageChinese
Published 甘肃省人民医院内分泌科,兰州 730000%兰州大学公共卫生学院,兰州 730000 20.08.2024
Subjects
Online AccessGet full text
ISSN1674-5809
DOI10.3760/cma.j.cn115791-20240110-00017

Cover

Abstract 目的:探讨1型糖尿病(T1DM)患者QTc间期延长的影响因素,建立预测模型并进行验证。方法:本研究为横断面研究。选取2016年1月至2023年10月在甘肃省人民医院内分泌科住院的568例T1DM患者为研究对象。根据12导联常规心电图检查中QTc间期水平,将研究对象分为QTc间期正常组(423例)和QTc间期延长组(145例),并收集患者的一般资料和实验室检测指标,包括T1DM病程、尿白蛋白/肌酐比值(UACR)、糖化血红蛋白(HbA 1c)、高密度脂蛋白胆固醇(HDL-C)、血肌酐(Scr)、左心室射血分数(LVEF),以及是否合并糖尿病周围神经病变(DPN)等。应用LASSO回归优化筛选变量,通过多因素logistic回归分析构建T1DM患者发生QTc间期延长风险的列线图模型。使用1 000次增强Bootstrap法对模型进行内部验证,分别采用受试者工作特征(ROC)曲线、校准曲线、临床决策曲线(DCA)和临床影响曲线(CIC)综合评估模型的预测价值、校准度和临床实用性。 结果:应用LASSO回归分析筛选出7个预测变量,包括T1DM病程、UACR、HbA 1c、LVEF、DPN、HDL-C及Scr。多因素logistic回归分析进一步显示,T1DM病程≥10年(OR=4.951)、UACR>300 mg/g(OR=1.759)、HbA 1c≥7%(OR=7.988)、LVEF≤50%(OR=8.501)、DPN(OR=1.708)、HDL-C(OR=0.198)是T1DM患者发生QTc间期延长的影响因素(均 P<0.05)。建立的预测模型内部验证结果显示,模型拟合度良好,ROC曲线下面积为0.822(95%CI 0.786~0.858),预测结果接近于实际。DCA显示,在0~0.8的阈值区间具有最大效益。CIC表明,预测模型可以在阈值概率范围内有效区分出QTc间期发生延长的高危患者。 结论:包含6个预测变量(T1DM病程、UACR、HbA 1c、LVEF、DPN、HDL-C)的列线图预测模型可用于预测T1DM患者发生QTc间期延长的风险,对早期甄别这类高风险人群具有一定的临床意义。
AbstractList 目的:探讨1型糖尿病(T1DM)患者QTc间期延长的影响因素,建立预测模型并进行验证。方法:本研究为横断面研究。选取2016年1月至2023年10月在甘肃省人民医院内分泌科住院的568例T1DM患者为研究对象。根据12导联常规心电图检查中QTc间期水平,将研究对象分为QTc间期正常组(423例)和QTc间期延长组(145例),并收集患者的一般资料和实验室检测指标,包括T1DM病程、尿白蛋白/肌酐比值(UACR)、糖化血红蛋白(HbA 1c)、高密度脂蛋白胆固醇(HDL-C)、血肌酐(Scr)、左心室射血分数(LVEF),以及是否合并糖尿病周围神经病变(DPN)等。应用LASSO回归优化筛选变量,通过多因素logistic回归分析构建T1DM患者发生QTc间期延长风险的列线图模型。使用1 000次增强Bootstrap法对模型进行内部验证,分别采用受试者工作特征(ROC)曲线、校准曲线、临床决策曲线(DCA)和临床影响曲线(CIC)综合评估模型的预测价值、校准度和临床实用性。 结果:应用LASSO回归分析筛选出7个预测变量,包括T1DM病程、UACR、HbA 1c、LVEF、DPN、HDL-C及Scr。多因素logistic回归分析进一步显示,T1DM病程≥10年(OR=4.951)、UACR>300 mg/g(OR=1.759)、HbA 1c≥7%(OR=7.988)、LVEF≤50%(OR=8.501)、DPN(OR=1.708)、HDL-C(OR=0.198)是T1DM患者发生QTc间期延长的影响因素(均 P<0.05)。建立的预测模型内部验证结果显示,模型拟合度良好,ROC曲线下面积为0.822(95%CI 0.786~0.858),预测结果接近于实际。DCA显示,在0~0.8的阈值区间具有最大效益。CIC表明,预测模型可以在阈值概率范围内有效区分出QTc间期发生延长的高危患者。 结论:包含6个预测变量(T1DM病程、UACR、HbA 1c、LVEF、DPN、HDL-C)的列线图预测模型可用于预测T1DM患者发生QTc间期延长的风险,对早期甄别这类高风险人群具有一定的临床意义。
Abstract_FL Objective:To investigate the factors influencing the QTc interval prolongation in patients with type 1 diabetes mellitus (T1DM), and to develop and to validate a predictive model.Methods:This was a cross-sectional study, and 568 patients with T1DM who were hospitalized in the Department of Endocrinology of Gansu Provincial People′s Hospital from January 2016 to October 2023 were selected as study subjects. Based on the length of QTc interval measurement in 12-lead conventional electrocardiography, the study subjects were divided into the normal QTc interval group (423 cases) and the prolonged QTc interval group (145 cases), and the general data and laboratory test indexes of the patients were collected, including the duration of T1DM, urinary albumin-creatinine ratio (UACR), glycated hemoglobin A 1c (HbA 1c), high-density lipoprotein cholesterol (HDL-C) and serum creatinine (Scr), left ventricular ejection fraction (LVEF), diabetic peripheral neuropathy (DPN). LASSO regression was applied to optimize the screening variables, and a column-line graphical model of the risk of QTc interval prolongation in T1DM patients was constructed by multifactor Logistic regression analysis. Internal validation of the model was performed using 1 000 enhanced Bootstrap method, and the predictive value, calibration and clinical utility of the model were comprehensively assessed using receiver operating characteristic (ROC) curve, calibration curve, clinical decision curve (DCA) and clinical impact curve (CIC). Results:LASSO regression analysis was applied to screen seven predictor variables, including T1DM duration, UACR, HbA 1c, LVEF, DPN, HDL-C, and Scr. Multifactorial logistic regression analysis further showed that T1DM duration≥10 years (OR=4.951), UACR>300 mg/g (OR=1.759), HbA 1c≥7% (OR=7.988), LVEF≤50% (OR=8.501), DPN (OR=1.708), and HDL-C (OR=0.198) were the influencing factors for the occurrence of QTc interval prolongation in patients with T1DM (all P<0.05). The internal validation results of the established prediction model showed that the model fit was good, and the area under the ROC curve was 0.822 (95%CI 0.786-0.858), which was close to the actual prediction results. DCA showed that there was a maximum benefit in the threshold interval of 0-0.8. CIC showed that the prediction model could effectively distinguish high-risk of the occurrence of prolongation of the QTc interval in the threshold probability range of patients. Conclusion:A column chart prediction model including six predictive variables (T1DM course, UACR, HbA 1c, LVEF, DPN and HDL-C) can be used to predict the risk of QTc interval extension in T1DM patients, which has clinical implications for early detection of such high-risk populations.
Author 王洁
李佳昱
黄昕
田利民
刘小宁
AuthorAffiliation 甘肃省人民医院内分泌科,兰州 730000%兰州大学公共卫生学院,兰州 730000
AuthorAffiliation_xml – name: 甘肃省人民医院内分泌科,兰州 730000%兰州大学公共卫生学院,兰州 730000
Author_FL Tian Limin
Wang Jie
Li Jiayu
Huang Xin
Liu Xiaoning
Author_FL_xml – sequence: 1
  fullname: Huang Xin
– sequence: 2
  fullname: Liu Xiaoning
– sequence: 3
  fullname: Li Jiayu
– sequence: 4
  fullname: Wang Jie
– sequence: 5
  fullname: Tian Limin
Author_xml – sequence: 1
  fullname: 黄昕
– sequence: 2
  fullname: 刘小宁
– sequence: 3
  fullname: 李佳昱
– sequence: 4
  fullname: 王洁
– sequence: 5
  fullname: 田利民
BookMark eNotj8tKw0AYhWdRwVr7GLpL_f-5ZDJLKV4KBRHquiRpRi06BaMIrlTaVUt3WiyiaDdeFgpeELvoy5ikeQvrZXUWH-c7nBmSMQ0TEDKHUGDShgV_1y3UC75BFFKhRYFyQAQLAFBmSBZtyS3hgJom-TDc9iZQgZrALClhdNVOXs6j51HSa8Wng_Fxa73ip73X-PI6Gr6nZ6N00E0v7pN-M71txm_t-O7mp9JvRsPP5LH99dFNHzrjp5NZMqXdnTDI_2eObCwvVYqrVnltpVRcLFshAjKLKi5cRW2NdsBFDR3OgduUep4SnhMEWjqU-1woj7GaLySXkrk68Jn0tFYoWI7M_3kPXaNds1mtNw72zGSxerS1b7zf8w4AY9-gH2pG
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3760/cma.j.cn115791-20240110-00017
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Development and validation of a predictive model for the risk of QTc interval prolongation in patients with type 1 diabetes mellitus
EndPage 856
ExternalDocumentID zhtnb202408003
GrantInformation_xml – fundername: 甘肃省重大科技专项; Gansu Province Major Science and Technology Special Project
  funderid: (22ZD6FA033); (22ZD6FA033)
GroupedDBID 2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CDYEO
PSX
TCJ
ID FETCH-LOGICAL-s1013-2945a926f16e45d184404622bb95b8eef7824c459b33dc574773afec37bff9153
ISSN 1674-5809
IngestDate Thu May 29 04:00:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords 糖尿病,1型
QTc interval
预测模型
Predictive modeling
QTc间期
Diabetes mellitus, type 1
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1013-2945a926f16e45d184404622bb95b8eef7824c459b33dc574773afec37bff9153
PageCount 8
ParticipantIDs wanfang_journals_zhtnb202408003
PublicationCentury 2000
PublicationDate 2024-08-20
PublicationDateYYYYMMDD 2024-08-20
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-20
  day: 20
PublicationDecade 2020
PublicationTitle 中华糖尿病杂志
PublicationTitle_FL Chinese Journal of Diabetes Mellitus
PublicationYear 2024
Publisher 甘肃省人民医院内分泌科,兰州 730000%兰州大学公共卫生学院,兰州 730000
Publisher_xml – name: 甘肃省人民医院内分泌科,兰州 730000%兰州大学公共卫生学院,兰州 730000
SSID ssib011909001
ssib048413644
ssib007286532
ssib003003870
ssib051368295
Score 2.3962972
Snippet 目的:探讨1型糖尿病(T1DM)患者QTc间期延长的影响因素,建立预测模型并进行验证。方法:本研究为横断面研究。选取2016年1月至2023年10月在甘肃省人民医院内分泌科住院的568...
SourceID wanfang
SourceType Aggregation Database
StartPage 849
Title 1型糖尿病患者QTc间期延长风险的预测模型的建立与验证
URI https://d.wanfangdata.com.cn/periodical/zhtnb202408003
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  issn: 1674-5809
  databaseCode: ABDBF
  dateStart: 20150701
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  omitProxy: true
  ssIdentifier: ssib011909001
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFA9lC-JFFBW_7cE5pm6S-fQ2s5ulCgrCFnorSTaxCK5gt5eeVNpTpTctFlG0Fz8OCn4g9tB_xt3t_hfOe8nupqXU6iVM3rx585v3knkvYd6M41zLWtaPx6LltgSLXKood21UxN1E0FRUIxnJFBKcb9_hM7P01hybm6jcKK1aWurE08nygXkl_2NVS7N2hSzZf7DsSKgl2LK1r71aC9vrkWzskZARFRJpSCiICYjiQDFVYhpAUYJIRkJOpE90QEIJ6xoku9tMSKig1lCoVTWiGtjQEMOxiqEEBa1kiBRbVihTE0mxyscCJ4YhAE60JHovpII5l6yBog1WUWJkIVlbnhpg0w2Sn6syDJYLNl0HCbKO_IcOU9VhpCGCVyMHC53Y_nOwSpL8uM28xsqVQMvFSdSCDoc4kCUXGyKYOvSeSzElFgH1uQ4MHTYufqX4FP4N-9XRw4-IKXYqAa4MkFKz7bAPjZrigEehNq12LPzCBjg8yXHACN6WgTlAJVr9CmzVIKaGFAacVhQMUIBhwgAfAjxBAE7oZgfxWCVQEAWFOtG84NEjgV5hEm2Gw2mUmEdQjwqj5Bq5oC6TVbXHd_LSHCFLjlDmG9EOY6p88_j97hoWZNl3LHkQTd-fTtqw75PyXLAMRKWw4UGe17tvR_TlhU47Ri6JG_1O-oJzv-JMalM3jZL3gqUZY28kIAl7nEXt2VBYDRdd2HsqbTzHx8Eus3fSx2ObRkM_5pAC9vVDQWMGYDuL2vdKwWrzpHOi-Mqc0vmUccqZWF447dz0uq_X-l9fdL_s9DdWe0-3dh-v2qlgsPGt9-pNd_vH4PnOYGt98PJDf3Nl8G6l932t9_4tNNlc6W7_6n9a-_1zffDx2e7nJ2ec2UbYrM24xUkq7qIHx7f4irJI-TzzeEpZy5OwKyj3_ThWLJZpmtnvBJpQpuIgaCVMUCGCKEuTQMRZpmxQdNaptB-203POlDUl5K4zRWNKWyyNhEyp4hmtxl6sWvK8c7UY-nwxUy7O7zXYhb9yXHSOj1_PS06l82gpvWxj_058pTDyH2oRvDk
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=1%E5%9E%8B%E7%B3%96%E5%B0%BF%E7%97%85%E6%82%A3%E8%80%85QTc%E9%97%B4%E6%9C%9F%E5%BB%B6%E9%95%BF%E9%A3%8E%E9%99%A9%E7%9A%84%E9%A2%84%E6%B5%8B%E6%A8%A1%E5%9E%8B%E7%9A%84%E5%BB%BA%E7%AB%8B%E4%B8%8E%E9%AA%8C%E8%AF%81&rft.jtitle=%E4%B8%AD%E5%8D%8E%E7%B3%96%E5%B0%BF%E7%97%85%E6%9D%82%E5%BF%97&rft.au=%E9%BB%84%E6%98%95&rft.au=%E5%88%98%E5%B0%8F%E5%AE%81&rft.au=%E6%9D%8E%E4%BD%B3%E6%98%B1&rft.au=%E7%8E%8B%E6%B4%81&rft.date=2024-08-20&rft.pub=%E7%94%98%E8%82%83%E7%9C%81%E4%BA%BA%E6%B0%91%E5%8C%BB%E9%99%A2%E5%86%85%E5%88%86%E6%B3%8C%E7%A7%91%EF%BC%8C%E5%85%B0%E5%B7%9E%E3%80%80730000%25%E5%85%B0%E5%B7%9E%E5%A4%A7%E5%AD%A6%E5%85%AC%E5%85%B1%E5%8D%AB%E7%94%9F%E5%AD%A6%E9%99%A2%EF%BC%8C%E5%85%B0%E5%B7%9E%E3%80%80730000&rft.issn=1674-5809&rft.volume=16&rft.issue=8&rft.spage=849&rft.epage=856&rft_id=info:doi/10.3760%2Fcma.j.cn115791-20240110-00017&rft.externalDocID=zhtnb202408003
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzhtnb%2Fzhtnb.jpg