基于结合混沌纵横交叉的PSO-DBN的短期光伏功率预测
TM615; 为了提高短期光伏发电预测的准确性,文中采用深度置信网络(DBN)建立了各模型函数的预测模型.通过分析各模型函数的特征,建立了光伏发电模型的功率预测.传统的基于神经网络的功率预测难以训练多层网络,影响其预测精度.DBN采用无监督贪婪逐层训练算法构建了一个在回归预测分析中具有优异性能的多隐层网络结构,已成为深度学习领域的研究热点.DBN连接权重采用结合混沌纵横交叉的粒子群优化算法(CC-PSO)优化,避免出现由随机初始化导致的局部最优解现象,从而提高了DBN网络预测性能.最后,案例测试显示了所提出模型的有效性....
Saved in:
Published in | 电测与仪表 Vol. 57; no. 6; pp. 67 - 72 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | Chinese |
Published |
天津理工大学电气电子工程学院,天津,300384
25.03.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1001-1390 |
DOI | 10.19753/j.issn1001-1390.2020.06.011 |
Cover
Abstract | TM615; 为了提高短期光伏发电预测的准确性,文中采用深度置信网络(DBN)建立了各模型函数的预测模型.通过分析各模型函数的特征,建立了光伏发电模型的功率预测.传统的基于神经网络的功率预测难以训练多层网络,影响其预测精度.DBN采用无监督贪婪逐层训练算法构建了一个在回归预测分析中具有优异性能的多隐层网络结构,已成为深度学习领域的研究热点.DBN连接权重采用结合混沌纵横交叉的粒子群优化算法(CC-PSO)优化,避免出现由随机初始化导致的局部最优解现象,从而提高了DBN网络预测性能.最后,案例测试显示了所提出模型的有效性. |
---|---|
AbstractList | TM615; 为了提高短期光伏发电预测的准确性,文中采用深度置信网络(DBN)建立了各模型函数的预测模型.通过分析各模型函数的特征,建立了光伏发电模型的功率预测.传统的基于神经网络的功率预测难以训练多层网络,影响其预测精度.DBN采用无监督贪婪逐层训练算法构建了一个在回归预测分析中具有优异性能的多隐层网络结构,已成为深度学习领域的研究热点.DBN连接权重采用结合混沌纵横交叉的粒子群优化算法(CC-PSO)优化,避免出现由随机初始化导致的局部最优解现象,从而提高了DBN网络预测性能.最后,案例测试显示了所提出模型的有效性. |
Author | 冷建伟 孙辉 |
AuthorAffiliation | 天津理工大学电气电子工程学院,天津,300384 |
AuthorAffiliation_xml | – name: 天津理工大学电气电子工程学院,天津,300384 |
Author_FL | Leng Jianwei Sun Hui |
Author_FL_xml | – sequence: 1 fullname: Sun Hui – sequence: 2 fullname: Leng Jianwei |
Author_xml | – sequence: 1 fullname: 孙辉 – sequence: 2 fullname: 冷建伟 |
BookMark | eNo9j81Kw0AcxPdQwVr7FuIt8b-72U1y1PgJxQrquWw2u9IiWzCI9F7RVmkFbyIExIMIXoRSiD5OPvAtjCieZpjD_GaWUM30jUJoBYONfZfRtZ7djWODAbCFqQ82AQI2cBswrqH6f76ImnHcDYFh6jocSB0FeZJm6aT8uM_vrov5vHi_LdNZ8fKapc_5dFQ-DA8O29bmxn7lyuSteEzyy1H2Oc3HSTm5-noaFrObZbSgxWmsmn_aQMfbW0fBrtVq7-wF6y0rxtUOK2KOYDyU1Q7HFeBwThSREHFPcYF9Qh0lQXrKjxSLlJZSMgxu5BMtNPW0Qxto9bf3QhgtzEmn1z8_MxWxE8nBIPz5DLwi0W_PS2Uh |
ClassificationCodes | TM615 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.19753/j.issn1001-1390.2020.06.011 |
DatabaseName | Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitle_FL | Short-term PV power prediction based on particle swarm optimization combined with chaos crossover for deep belief networks |
EndPage | 72 |
ExternalDocumentID | dcyyb202006011 |
GroupedDBID | -03 2B. 4A8 5XA 5XD 92H 92I 93N ABJNI ACGFS ADMLS ALMA_UNASSIGNED_HOLDINGS CCEZO CEKLB CW9 GROUPED_DOAJ PSX TCJ TGT U1G U5M |
ID | FETCH-LOGICAL-s1011-d54a56bc39047a04662e2c0d68e6a19234ec0c8e9de5defccc5107d92faf38f43 |
ISSN | 1001-1390 |
IngestDate | Thu May 29 04:07:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | 粒子群算法 预测精度 混沌横纵交叉 深度信念网络 光伏功率预测 |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-s1011-d54a56bc39047a04662e2c0d68e6a19234ec0c8e9de5defccc5107d92faf38f43 |
PageCount | 6 |
ParticipantIDs | wanfang_journals_dcyyb202006011 |
PublicationCentury | 2000 |
PublicationDate | 2020-03-25 |
PublicationDateYYYYMMDD | 2020-03-25 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-25 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | 电测与仪表 |
PublicationTitle_FL | Electrical Measurement & Instrumentation |
PublicationYear | 2020 |
Publisher | 天津理工大学电气电子工程学院,天津,300384 |
Publisher_xml | – name: 天津理工大学电气电子工程学院,天津,300384 |
SSID | ssib051374602 ssj0039791 ssib001129792 |
Score | 2.2535605 |
Snippet | TM615;... |
SourceID | wanfang |
SourceType | Aggregation Database |
StartPage | 67 |
Title | 基于结合混沌纵横交叉的PSO-DBN的短期光伏功率预测 |
URI | https://d.wanfangdata.com.cn/periodical/dcyyb202006011 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEG6SCKIH8Ylvc0gfJ86jn8eZyS5BMAomsLcwMz1jTiuYzSE5RzQqieBNhAXxIIIXIQRWf84-8F9Y1TO7O8HgC5ahtrqr-uuumanq7uluQhZSBW61SBPHl17mMM9IJzVe4Rhfi5TnaZLZAbf7K2J5jd1r8dbMbKv21dJWJ13Mdk5cV_I_VgUe2BVXyf6DZSdKgQE02BeuYGG4_pWNaYNT3aRRSBsMr6pBG5JGEdWBTXKpUrQhaCTxh4RPVWzzhDTiyAkVDcfiIUMp1aRKYx4NCtnDRw-cpWhl8t8STRouobCOkUYZbmVAS4zyyAltkkRMCsrWNPStuMCCVVQPiq1OVgGyqVaVsvVhWB-ECEA9gDu-Q7AQQKE1pkRQiK6nKFtpIEC4ah7EWh_jgA6tGzjlemh7V1qNjIbawgCCW2AuKkNN0nLKPLIqPhTHwbtITzklRLcmLrHFsYITcY11gMbx4xMA-HGAs6qs5jvw6zQIqN26cyl3364eorqnKA8hqWKO8vSiX7wZLnq27gz1T9QvYgvZTWcrN3V8v3CTbW-nmAV32vFmySlfQlRZG2ywgTKEeXI6n869QDLhTjZew8leO1QxLvM0WRgDuvsbOHblW7tI2o9rQdrqeXKu6l3Nh-WjcoHM7GxcJGdre25eIvGg2-v39kff3g7evBgeHQ2_vh71DoefPvd7HwcHe6N3u9UtD9So-2X4vjt4ttf_fjB42R3tP__xYXd4-OoyWWs2VuNlpzpJxNn0cA7AcJZwkWYAl8nEZUL4uZ-5RqhcJNjHYXnmZirXJucmL7IsA1cljfaLpAhUwYIrZK79pJ1fJfOB4FoYDRlAyvgshaZKJPCUgZcyV9fInaoJ1qs3xeb6cZNc_2OOG-TM9Cm4SeY6T7fyWxD7dtLb1ow_Ab--gyQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E7%BB%93%E5%90%88%E6%B7%B7%E6%B2%8C%E7%BA%B5%E6%A8%AA%E4%BA%A4%E5%8F%89%E7%9A%84PSO-DBN%E7%9A%84%E7%9F%AD%E6%9C%9F%E5%85%89%E4%BC%8F%E5%8A%9F%E7%8E%87%E9%A2%84%E6%B5%8B&rft.jtitle=%E7%94%B5%E6%B5%8B%E4%B8%8E%E4%BB%AA%E8%A1%A8&rft.au=%E5%AD%99%E8%BE%89&rft.au=%E5%86%B7%E5%BB%BA%E4%BC%9F&rft.date=2020-03-25&rft.pub=%E5%A4%A9%E6%B4%A5%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6%E7%94%B5%E6%B0%94%E7%94%B5%E5%AD%90%E5%B7%A5%E7%A8%8B%E5%AD%A6%E9%99%A2%2C%E5%A4%A9%E6%B4%A5%2C300384&rft.issn=1001-1390&rft.volume=57&rft.issue=6&rft.spage=67&rft.epage=72&rft_id=info:doi/10.19753%2Fj.issn1001-1390.2020.06.011&rft.externalDocID=dcyyb202006011 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdcyyb%2Fdcyyb.jpg |