基于生成对抗网络和Mask R-CNN的苹果早期变质检测

[目的]提高苹果早期变质区的检测准确率.[方法]基于生成对抗网络和卷积神经网络技术的苹果变质区检测方法.利用Pix2PixHD模型生成包含采后早期变质区的贮藏苹果的近红外成像数据;使用Mask R-CNN模型对生成的近红外图像进行分割,以检测苹果中的变质区;在具有人工智能功能的低成本嵌入式系统上,利用生成的近红外成像数据,实施基于生成对抗网络和卷积神经网络技术的采后苹果的早期变质区域分割和预测.[结果]该方法对收获后苹果的早期变质检测平均准确率比其他9种方法高1.825%~10.435%;Pix2PixHD能以17帧/s的速度从RGB图像生成了可视近红外图像,Mask R-CNN能够以4.2帧...

Full description

Saved in:
Bibliographic Details
Published in食品与机械 Vol. 40; no. 6; pp. 143 - 169
Main Authors 于琦龙, 赵晓东, 籍宇, 王春荣, 孙尧
Format Journal Article
LanguageChinese
Published 河北机电职业技术学院,河北 邢台 054000%河北科技大学,河北 石家庄 050018%河北农业大学,河北保定 071001 01.06.2024
Subjects
Online AccessGet full text
ISSN1003-5788
DOI10.13652/j.spjx.1003.5788.2024.60038

Cover

Abstract [目的]提高苹果早期变质区的检测准确率.[方法]基于生成对抗网络和卷积神经网络技术的苹果变质区检测方法.利用Pix2PixHD模型生成包含采后早期变质区的贮藏苹果的近红外成像数据;使用Mask R-CNN模型对生成的近红外图像进行分割,以检测苹果中的变质区;在具有人工智能功能的低成本嵌入式系统上,利用生成的近红外成像数据,实施基于生成对抗网络和卷积神经网络技术的采后苹果的早期变质区域分割和预测.[结果]该方法对收获后苹果的早期变质检测平均准确率比其他9种方法高1.825%~10.435%;Pix2PixHD能以17帧/s的速度从RGB图像生成了可视近红外图像,Mask R-CNN能够以4.2帧/s的速度对苹果图像中的变质区域进行分割.[结论]研究提出的方法有望促进低成本食品质量控制器的开发.
AbstractList [目的]提高苹果早期变质区的检测准确率.[方法]基于生成对抗网络和卷积神经网络技术的苹果变质区检测方法.利用Pix2PixHD模型生成包含采后早期变质区的贮藏苹果的近红外成像数据;使用Mask R-CNN模型对生成的近红外图像进行分割,以检测苹果中的变质区;在具有人工智能功能的低成本嵌入式系统上,利用生成的近红外成像数据,实施基于生成对抗网络和卷积神经网络技术的采后苹果的早期变质区域分割和预测.[结果]该方法对收获后苹果的早期变质检测平均准确率比其他9种方法高1.825%~10.435%;Pix2PixHD能以17帧/s的速度从RGB图像生成了可视近红外图像,Mask R-CNN能够以4.2帧/s的速度对苹果图像中的变质区域进行分割.[结论]研究提出的方法有望促进低成本食品质量控制器的开发.
Abstract_FL [Objective]To improve the detection accuracy of early apple spoilage zone.[Methods]An apple spoilage detection method was proposed based on generative adversarial network and convolutional neural network.The Pix2PixHD model was used to generate near-infrared imaging data of stored apples in the early postharvest metamorphic area.The Mask R-CNN model was used to segment the generated near Infrared image to detect the deterioration zone in the apple.Based on generative adversarial network and convolutional neural network technology,the early deterioration region segmentation and prediction of postharvest apples were implemented by using the generated near-infrared imaging data on a low-cost embedded system with artificial intelligence function.[Results]The average accuracy of this method was 1.825%~10.435%higher than that of the other nine methods.The Pix2PixHD generated a visible NIR image from an RGB image at 17 frames per second,and the Mask R-CNN was able to segment spoilage areas in an apple image at 4.2 frames per second.[Conclusion]The proposed method is expected to facilitate the development of low-cost food quality controllers.
Author 赵晓东
于琦龙
籍宇
孙尧
王春荣
AuthorAffiliation 河北机电职业技术学院,河北 邢台 054000%河北科技大学,河北 石家庄 050018%河北农业大学,河北保定 071001
AuthorAffiliation_xml – name: 河北机电职业技术学院,河北 邢台 054000%河北科技大学,河北 石家庄 050018%河北农业大学,河北保定 071001
Author_FL YU Qilong
ZHAO Xiaodong
JI Yu
WANG Chunrong
SUN Yao
Author_FL_xml – sequence: 1
  fullname: YU Qilong
– sequence: 2
  fullname: ZHAO Xiaodong
– sequence: 3
  fullname: JI Yu
– sequence: 4
  fullname: WANG Chunrong
– sequence: 5
  fullname: SUN Yao
Author_xml – sequence: 1
  fullname: 于琦龙
– sequence: 2
  fullname: 赵晓东
– sequence: 3
  fullname: 籍宇
– sequence: 4
  fullname: 王春荣
– sequence: 5
  fullname: 孙尧
BookMark eNotj7tKA0EYhaeIYIx5Bwux2_Wf-Wd2Zztl8QYxgmgdZm_iKpvgIGpnYRGMeEOISDCFjVY2WiTi27izeQwTtDqcr_gOZ4aUsmYWEzJPwaboCLaY2rqVntoUAG3hSmkzYNx2xlWWSHmCrQmeJlWt9wNAhyP3HCyTpbw__BleFw99077N3wfmslt83xVfvfz-alPpg7lty6_Xi6eLUWdgnnum-2Z6_fzmcfTxal7OzWdnlkwl6lDH1f-skN3VlR1_3aptrW34yzVLU6BgUS_2ABgTCU8SFsYhV4KCJ2MUGFDqoAzRVegGjMvYhShCyT0RqEgoJmQSYYUs_HlPVJaobK-RNo-PsvFiQ7fO0nTyFxxggL8JnWFW
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2B.
4A8
92I
93N
PSX
TCJ
DOI 10.13652/j.spjx.1003.5788.2024.60038
DatabaseName Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
DocumentTitle_FL Early spoilage detection of apple based on generative adversarial network and Mask R-CNN
EndPage 169
ExternalDocumentID spyjj202406020
GrantInformation_xml – fundername: (河北省高等学校科学技术研究项目); (邢台市科技计划自筹经费项目)
  funderid: (河北省高等学校科学技术研究项目); (邢台市科技计划自筹经费项目)
GroupedDBID -02
2B.
4A8
92I
93N
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CDRFL
GROUPED_DOAJ
PSX
TCJ
ID FETCH-LOGICAL-s1010-19e900225f4ff2cec4a51098e353b11638c37a37b248e70dd38495bad5a258fd3
ISSN 1003-5788
IngestDate Thu May 29 03:54:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords generative adversarial network
apple
生成对抗网络
苹果
卷积神经网络
early spoilage detection
早期变质检测
convolutional neural network
图像转换
image conversion
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-s1010-19e900225f4ff2cec4a51098e353b11638c37a37b248e70dd38495bad5a258fd3
PageCount 27
ParticipantIDs wanfang_journals_spyjj202406020
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationTitle 食品与机械
PublicationTitle_FL Food & Machinery
PublicationYear 2024
Publisher 河北机电职业技术学院,河北 邢台 054000%河北科技大学,河北 石家庄 050018%河北农业大学,河北保定 071001
Publisher_xml – name: 河北机电职业技术学院,河北 邢台 054000%河北科技大学,河北 石家庄 050018%河北农业大学,河北保定 071001
SSID ssib036434963
ssib001105548
ssib001214864
ssj0002912145
ssib002263614
ssib008679503
ssib051376485
ssib000271415
Score 2.3855186
Snippet [目的]提高苹果早期变质区的检测准确率.[方法]基于生成对抗网络和卷积神经网络技术的苹果变质区检测方法.利用Pix2PixHD模型生成包含采后早期变质区的贮藏苹果的近红外成像...
SourceID wanfang
SourceType Aggregation Database
StartPage 143
Title 基于生成对抗网络和Mask R-CNN的苹果早期变质检测
URI https://d.wanfangdata.com.cn/periodical/spyjj202406020
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  issn: 1003-5788
  databaseCode: DOA
  dateStart: 20220101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0002912145
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFA-1gngRRcVve-iclqyZr2TmZpJNKUJ7kFZ6K8luoqywFrcF7cmDB7HiF0JFij140ZMXPbTif-Nm-2f43iTdpLTVKoQwzLy8N7_3hnnz8TJjWZPMw728jNoaple2UElix0JmtkhFzFma6U6KE8WZWXd6XtxakAtj43dqUUsry0mzvXrgfyX_Y1XIA7viX7L_YNkRU8iANNgX3mBheB_JxiSSRE-RwCeRwLeKSOQRLTAzcolSRDtI4wONNjk-0R7SBC2iqUkERIeGDyMqnIn79xu37XB21jACjoJEiqig_F5HhtpFLn6RExphkqgpohUSB4L4Cot8jmEUkAigNKiPgkmksbT4UAMZNQCUAWB4IiTgwEgw2k7Zi9EhvotsAqiRrkgUCoMHuWhkXfDVYUUCmClRLaOXiFR-GEuAOWDFjxXxpYHegprWl0aYqEK4TGM2CKGi3GghNAoeYTDWCApOFEvL-vilNQoFAbFvdOG3SlhQeQDPwv3MG1isGBYXWg-cBg6I8bZteVBdwFKeMfZIIMgRmDkSeIgczzQuXmoqcDGBFhAgEK9ZPEQgJAykCuqRBBp6aES7ltF-wxwKRWt-E0McofNXdcdanMNVdiB1L0mLk7nKARct7urZ58u5K5lx5v2l7iOM5uFNlNBESzdd3NKuxjCjyNL-0uNuFykcFyZCx6zjDLy9U1tqKXfbaX0ZgeItsbVlAcqo2HNrAXO5W4s2wEMqZRW9wGFUL3R1jJ2k4LVFeSYUjgiZRo7SBF6UejphTe5ivPEHhOZXwl4W9-7WRr1zp61T5XR1wi_6njPW2Oq9s9bNweb2r-2Xw3eb-bPXg69b-fP14c83wx8bg7cvsAeZMD3I8MPTnbWt_ONGvv4l39gcvHq_8-1z_ulJ_n3tnDU_Fc2F03Z5E4vdpyZ8S6ca1SAzkWWsnbZFDL5cq5RLnlCc0rW5F3MvYUKlntPpcCW0TOKOjJlUWYeft8Z7D3rpBWtCMpVokbaVq9vCSZwkieMUD_5LPVCZ8C5a10vEi2VP21_ca9RLf6W4bJ2suoMr1vjyw5X0KswdlpNrpiH8BtULwx4
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E7%94%9F%E6%88%90%E5%AF%B9%E6%8A%97%E7%BD%91%E7%BB%9C%E5%92%8CMask+R-CNN%E7%9A%84%E8%8B%B9%E6%9E%9C%E6%97%A9%E6%9C%9F%E5%8F%98%E8%B4%A8%E6%A3%80%E6%B5%8B&rft.jtitle=%E9%A3%9F%E5%93%81%E4%B8%8E%E6%9C%BA%E6%A2%B0&rft.au=%E4%BA%8E%E7%90%A6%E9%BE%99&rft.au=%E8%B5%B5%E6%99%93%E4%B8%9C&rft.au=%E7%B1%8D%E5%AE%87&rft.au=%E7%8E%8B%E6%98%A5%E8%8D%A3&rft.date=2024-06-01&rft.pub=%E6%B2%B3%E5%8C%97%E6%9C%BA%E7%94%B5%E8%81%8C%E4%B8%9A%E6%8A%80%E6%9C%AF%E5%AD%A6%E9%99%A2%2C%E6%B2%B3%E5%8C%97+%E9%82%A2%E5%8F%B0+054000%25%E6%B2%B3%E5%8C%97%E7%A7%91%E6%8A%80%E5%A4%A7%E5%AD%A6%2C%E6%B2%B3%E5%8C%97+%E7%9F%B3%E5%AE%B6%E5%BA%84+050018%25%E6%B2%B3%E5%8C%97%E5%86%9C%E4%B8%9A%E5%A4%A7%E5%AD%A6%2C%E6%B2%B3%E5%8C%97%E4%BF%9D%E5%AE%9A+071001&rft.issn=1003-5788&rft.volume=40&rft.issue=6&rft.spage=143&rft.epage=169&rft_id=info:doi/10.13652%2Fj.spjx.1003.5788.2024.60038&rft.externalDocID=spyjj202406020
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fspyjj%2Fspyjj.jpg